示例#1
0
def vpg(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, 
        steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
        vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
        logger_kwargs=dict(), save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
#    tf.compat.v1.random.set_random_seed(seed)
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape
    
    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(logp_old_ph - logp)      # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(-logp)                  # a sample estimate for entropy, also easy to compute

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k:v for k,v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs)

        # Policy gradient step
        sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict=inputs)
        logger.store(LossPi=pi_l_old, LossV=v_l_old, 
                     KL=kl, Entropy=ent, 
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    maxRev=float("-inf") #negative infinity in the beginning
    #maxRevActionSeq=[]
    maxRevTSTT=0
    maxRevRevenue=0
    maxRevThroughput=0
    maxRevJAH=0
    maxRevRemVeh=0
    maxRevJAH2=0
    maxRevRMSE_MLvio=0
    maxRevPerTimeVio=0
    maxRevHOTDensity=pd.DataFrame()
    maxRevGPDensity=pd.DataFrame()
    maxtdJAHMax=0
    
    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        
        #Tracking maxRev action profile
        #actionSeq=[]
        
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1,-1)})
            #print("This step number", t)
            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)
            
            #we need to scale the sampled values of action from (-1,1) to our choices of toll coz they were sampled from tanh activation mu
            numpyFromA = np.array(a[0])
            numpyFromA = ((numpyFromA+1.0)*(env.state.tollMax-env.state.tollMin)/2.0)+ env.state.tollMin
            a[0] = np.ndarray.tolist(numpyFromA)
            
            o, r, d, _ = env.step(a[0])
            #actionSeq.append(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t==local_steps_per_epoch-1):
                if not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(v, feed_dict={x_ph: o.reshape(1,-1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    #get other stats and store them too
                    otherStats = env.getAllOtherStats()
#                    if np.any(np.isnan(np.array(otherStats))):
#                        sys.exit("Nan found in statistics! Error")
                    logger.store(EpTSTT=otherStats[0], EpRevenue=otherStats[1], 
                                 EpThroughput=otherStats[2], EpJAH=otherStats[3],
                                 EpRemVeh=otherStats[4], EpJAH2= otherStats[5],
                                 EpMLViolRMSE=otherStats[6], EpPerTimeVio=otherStats[7],
                                 EptdJAHMax=otherStats[8])
                    #determine max rev profile
                    if ep_ret> maxRev:
                        maxRev=ep_ret
                        maxRevActionSeq = env.state.tollProfile
                        maxRevTSTT=otherStats[0]; maxRevRevenue=otherStats[1]; 
                        maxRevThroughput=otherStats[2]
                        maxRevJAH=otherStats[3]
                        maxRevRemVeh=otherStats[4]
                        maxRevJAH2= otherStats[5]
                        maxRevRMSE_MLvio = otherStats[6]
                        maxRevPerTimeVio= otherStats[7]
                        maxRevHOTDensity = env.getHOTDensityData()
                        maxRevGPDensity = env.getGPDensityData()
                        maxtdJAHMax = otherStats[8]
                    #actionSeq=[]
                        
                if customEnvPrinting:
                    print(env.getAllOtherStats()) #before resetting print stats
                #print("reseting now, because terminal=", terminal)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
#        if epoch%49==0:
#            print(actionSeq)
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpTSTT', average_only=True)
        logger.log_tabular('EpRevenue', average_only=True)
        logger.log_tabular('EpThroughput', average_only=True)
        logger.log_tabular('EpJAH', average_only=True)
        logger.log_tabular('EpRemVeh', average_only=True)
        logger.log_tabular('EpJAH2', average_only=True)
        logger.log_tabular('EpMLViolRMSE', average_only=True)
        logger.log_tabular('EpPerTimeVio', average_only=True)
        logger.log_tabular('EptdJAHMax', average_only=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
    print("Max cumulative reward obtained= %f "% maxRev)
    print("Corresponding revenue($)= %f, TSTT(hrs)= %f, Throughput(veh)=%f, JAHstat= %f, remaining vehicles= %f, JAHstat2=%f, RMSEML_vio=%f, percentTimeViolated(%%)=%f, tdJAHMax= %f" % 
          (maxRevRevenue,maxRevTSTT,maxRevThroughput,maxRevJAH,maxRevRemVeh,maxRevJAH2, maxRevRMSE_MLvio, maxRevPerTimeVio, maxtdJAHMax))
    outputVector = [maxRev, maxRevRevenue,maxRevTSTT,maxRevThroughput,maxRevJAH,maxRevRemVeh,maxRevJAH2, maxRevRMSE_MLvio, maxRevPerTimeVio, maxtdJAHMax]
    #print("\n===Max rev action sequence is\n",maxRevActionSeq)
    exportTollProfile(maxRevActionSeq, logger_kwargs, outputVector)
    exportDensityData(maxRevHOTDensity, maxRevGPDensity, logger_kwargs)
示例#2
0
def vpg(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=10,
        custom_h=None,
        do_checkpoint_eval=False,
        env_name=None):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # create logger for tensorboard
    tb_logdir = "{}/tb_logs/".format(logger.output_dir)
    tb_logger = Logger(log_dir=tb_logdir)

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    if custom_h is not None:
        hidden_layers_str_list = custom_h.split('-')
        hidden_layers_int_list = [int(h) for h in hidden_layers_str_list]
        ac_kwargs['hidden_sizes'] = hidden_layers_int_list

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    # create a tf session with GPU memory usage option to be allow_growth so that one program will not use up the
    # whole GPU memory
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.run(tf.global_variables_initializer())
    # log tf graph
    tf.summary.FileWriter(tb_logdir, sess.graph)

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    # for saving the best models and performances during train and evaluate
    best_eval_AverageEpRet = 0.0
    best_eval_StdEpRet = 1.0e20

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Policy gradient step
        sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl],
                                         feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            # Save a new model every save_freq and at the last epoch. Do not overwrite the previous save.
            logger.save_state({'env': env}, epoch)

            # Evaluate and save best model
            if do_checkpoint_eval and epoch > 0:
                # below is a hack. best model related stuff is saved at itr 999999, therefore, simple_save999999.
                # Doing this way, I can use test_policy and plot directly to test the best models.
                # saved best models includes:
                # 1) a copy of the env
                # 2) the best rl model with parameters
                # 3) a pickle file "best_eval_performance_n_structure" storing best_performance, best_structure and epoch
                # note that 1) and 2) are spinningup defaults, and 3) is a custom save
                best_eval_AverageEpRet, best_eval_StdEpRet = eval_and_save_best_model(
                    best_eval_AverageEpRet,
                    best_eval_StdEpRet,
                    # a new logger is created and passed in so that the new logger can leverage the directory
                    # structure without messing up the logger in the training loop
                    eval_logger=EpochLogger(
                        **dict(exp_name=logger_kwargs['exp_name'],
                               output_dir=os.path.join(logger.output_dir,
                                                       "simple_save999999"))),
                    train_logger=logger,
                    tb_logger=tb_logger,
                    epoch=epoch,
                    # the env_name is passed in so that to create an env when and where it is needed. This is to
                    # logx.save_state() error where an env pointer cannot be pickled
                    env_name=env_name,
                    get_action=lambda x: sess.run(
                        pi, feed_dict={x_ph: x[None, :]})[0])

        # Perform VPG update!
        update()

        # # # Log into tensorboard
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="EpRet",
                      with_min_and_max=True)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="EpLen",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="VVals",
                      with_min_and_max=True)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="LossPi",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="LossV",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="DeltaLossPi",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="DeltaLossV",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="Entropy",
                      with_min_and_max=False)
        log_key_to_tb(tb_logger,
                      logger,
                      epoch,
                      key="KL",
                      with_min_and_max=False)
        tb_logger.log_scalar(tag="TotalEnvInteracts",
                             value=(epoch + 1) * steps_per_epoch,
                             step=epoch)
        tb_logger.log_scalar(tag="Time",
                             value=time.time() - start_time,
                             step=epoch)

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
示例#3
0
def vpg(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Policy gradient step
        sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl],
                                         feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
示例#4
0
def pg_linesearch(env_fn,
                  actor_critic=core.mlp_actor_critic,
                  ac_kwargs=dict(),
                  seed=0,
                  steps_per_epoch=4000,
                  epochs=50,
                  gamma=0.99,
                  pi_lr=3e-4,
                  backtrack_coeff=0.8,
                  delta=0.01,
                  backtrack_iters=1000,
                  vf_lr=1e-3,
                  train_v_iters=80,
                  lam=0.97,
                  max_ep_len=1000,
                  logger_kwargs=dict(),
                  save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute

    # Optimizers
    #train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    # Symbols needed for CG solver
    pi_params = trpo_core.get_vars('pi')
    gradient = trpo_core.flat_grad(pi_loss, pi_params)
    #v_ph, hvp = trpo_core.hessian_vector_product(d_kl, pi_params)
    v_ph = tf.placeholder(tf.float32, shape=gradient.shape)
    ##TODO: more analysis on damping Coeff
    #if damping_coeff > 0:
    #hvp += damping_coeff * v_ph

    # Symbols for getting and setting params
    get_pi_params = trpo_core.flat_concat(pi_params)
    set_pi_params = trpo_core.assign_params_from_flat(v_ph, pi_params)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def cg(Ax, b):
        """
        Conjugate gradient algorithm
        (see https://en.wikipedia.org/wiki/Conjugate_gradient_method)
        """

        ##TODO: Next Step is to try the hessian
        x = np.zeros_like(b)
        r = b.copy(
        )  # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.
        p = r.copy()
        r_dot_old = np.dot(r, r)
        cg_iters = 20
        for _ in range(cg_iters):
            z = Ax(p)
            alpha = r_dot_old / (np.dot(p, z) + EPS)
            x += alpha * p
            r -= alpha * z
            r_dot_new = np.dot(r, r)
            p = r + (r_dot_new / r_dot_old) * p
            r_dot_old = r_dot_new
        return x

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        #TODO: Next step is to calculate the hessian using safe distance
        #Hx = lambda x : mpi_avg(sess.run(hvp, feed_dict={**inputs, v_ph: x}))
        g, pi_l_old, v_l_old, ent = sess.run(
            [gradient, pi_loss, v_loss, approx_ent], feed_dict=inputs)
        g, pi_l_old = mpi_avg(g), mpi_avg(pi_l_old)
        #x = cg(Hx, g)
        #x = optimize.fmin_cg(pi_l_old, x0, fprime=g)
        x = g
        old_params = sess.run(get_pi_params)
        old_penalty = env.penalty(env.s)
        alpha = np.sqrt(2 * delta / (np.dot(x, g) + EPS))

        # backtracking line search, hard constraint check on env penalty
        for j in range(backtrack_iters):
            step = backtrack_coeff**j
            sess.run(set_pi_params,
                     feed_dict={v_ph: old_params - alpha * x * step})
            pi_l_new = sess.run([pi_loss], feed_dict=inputs)
            penalty = env.penalty(env.s)
            #print("Old Penalty {}, Penalty {}".format(old_penalty,penalty))

            if penalty == 0 or penalty < old_penalty:
                #if pi_l_new <= pi_l_old:
                logger.log('Accepting new params at step %d of line search.' %
                           j)
                logger.store(BacktrackIters=j)
                logger.store(penalty=penalty, old_penalty=old_penalty)
                break

            if j == backtrack_iters - 1:
                logger.log('Line search failed! Keeping old params.')
                logger.store(BacktrackIters=j)
                logger.store(penalty=penalty, old_penalty=old_penalty)

        # Policy gradient step
        #sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        #pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict={v_ph: old_params - alpha * x * step})
        logger.store(LossPi=pi_l_old,
                     Entropy=ent,
                     DeltaLossPi=(pi_l_new - pi_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', average_only=True)
        logger.log_tabular('penalty', average_only=True)
        logger.log_tabular('old_penalty', average_only=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()