示例#1
0
def assembly_mass_matrix_D(V):

    # ... sizes
    [s1, s2] = V.vector_space.starts
    [e1, e2] = V.vector_space.ends
    [p1, p2] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2] = [W.spans for W in V.spaces]
    [basis_1, basis_2] = [W.quad_basis for W in V.spaces]
    [weights_1, weights_2] = [W.quad_weights for W in V.spaces]
    [points_1, points_2] = [W.quad_points for W in V.spaces]
    [V_1, V_2] = [W for W in V.spaces]

    #    print(V.spaces[0].quad_order)
    # ... data structure
    M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... build matrices
    for ie1 in range(s1, e1 + 1 - p1):
        for ie2 in range(s2, e2 + 1 - p2):
            i_span_1 = spans_1[ie1]
            i_span_2 = spans_2[ie2]
            for il_1 in range(0, p1 + 1):
                for jl_1 in range(0, p1 + 1):
                    for il_2 in range(0, p2 + 1):
                        for jl_2 in range(0, p2 + 1):

                            i1 = i_span_1 - p1 - 1 + il_1
                            j1 = i_span_1 - p1 - 1 + jl_1

                            i2 = i_span_2 - p2 - 1 + il_2
                            j2 = i_span_2 - p2 - 1 + jl_2

                            v_s = 0.0
                            for g1 in range(0, k1):
                                for g2 in range(0, k2):
                                    di1_0 = coefficients_linear_combinaison(
                                        V_1, i1) * basis_1[ie1, il_1, 0, g1]
                                    di2_0 = coefficients_linear_combinaison(
                                        V_2, i2) * basis_2[ie1, il_2, 0, g1]
                                    bi_0 = di1_0 * di2_0
                                    d_j1 = basis_1[
                                        ie1, jl_1, 0,
                                        g1] * coefficients_linear_combinaison(
                                            V_1, j1)
                                    d_j2 = basis_2[
                                        ie2, jl_2, 0,
                                        g2] * coefficients_linear_combinaison(
                                            V_2, j2)
                                    bj_0 = d_j1 * d_j2
                                    wvol = weights_1[ie1, g1] * weights_2[ie2,
                                                                          g2]
                                    v_s = v_s + bi_0 * bj_0 * wvol
                            M[i1, i2, j1 - i1, j2 - i2] += v_s
    # ...
    return M
示例#2
0
def assembly_mass_V(V):

    # ... sizes
    [s1, s2] = V.vector_space.starts
    [e1, e2] = V.vector_space.ends
    [p1, p2] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2] = [W.spans for W in V.spaces]
    [basis_1, basis_2] = [W.quad_basis for W in V.spaces]
    [weights_1, weights_2] = [W.quad_weights for W in V.spaces]
    [points_1, points_2] = [W.quad_points for W in V.spaces]

    #    print(V.spaces[0].quad_order)
    # ... data structure
    M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... build matrices
    for ie1 in range(s1, e1 + 1 - p1):
        for ie2 in range(s2, e2 + 1 - p2):
            i_span_1 = spans_1[ie1]
            i_span_2 = spans_2[ie2]
            for il_1 in range(0, p1 + 1):
                for jl_1 in range(0, p1 + 1):
                    for il_2 in range(0, p2 + 1):
                        for jl_2 in range(0, p2 + 1):

                            i1 = i_span_1 - p1 - 1 + il_1
                            j1 = i_span_1 - p1 - 1 + jl_1

                            i2 = i_span_2 - p2 - 1 + il_2
                            j2 = i_span_2 - p2 - 1 + jl_2

                            v_s = 0.0
                            for g1 in range(0, k1):
                                for g2 in range(0, k2):
                                    bi_0 = basis_1[ie1, il_1, 0,
                                                   g1] * basis_2[ie1, il_2, 0,
                                                                 g2]
                                    bj_0 = basis_1[ie1, jl_1, 0,
                                                   g1] * basis_2[ie2, jl_2, 0,
                                                                 g2]
                                    #                                    bj_x = basis_1[ie1, jl_1, 1, g1] * basis_2[ie2, jl_2, 0, g2]
                                    #                                    bj_y = basis_1[ie1, jl_1, 0, g1] * basis_2[ie2, jl_2, 1, g2]

                                    wvol = weights_1[ie1, g1] * weights_2[ie2,
                                                                          g2]

                                    #                                    v_s += (bi_x * bj_x + bi_y * bj_y) * wvol
                                    v_s = v_s + bi_0 * bj_0 * wvol
                            M[i1, i2, j1 - i1, j2 - i2] += v_s
    # ...
    return M
示例#3
0
def assemblyDSpanMassMatrix(V):
	"""
		Assembly the mass matrix of the space V
		
		Entries:
		--------
			
			V: SplineSpace
		
		Output:
		-------
			
			mass : StencilMatrix - the mass matrix
	"""
	# ... sizes
	[s1] = V.vector_space.starts
	[e1] = V.vector_space.ends
	[p1] = V.vector_space.pads

	k1        = V.quad_order
	spans_1   = V.spans
	basis_1   = V.quad_basis
	weights_1 = V.quad_weights
	knots_1 = V.knots
	# ...

	# ... data structure
	mass      = StencilMatrix( V.vector_space, V.vector_space )
	# ...

	# ... build matrices
	for ie1 in range(s1, e1+1-p1):
		i_span_1 = spans_1[ie1]
		for il_1 in range(0, p1+1):
		    for jl_1 in range(0, p1+1):
		        i1 = i_span_1 - p1 + il_1
		        j1 = i_span_1 - p1 + jl_1

		        # -- assembly D_j^p B-spline family: D_j^p = alpha * basis_w_0
		        alpha_j = coeffDspan(V, j1)               

		        # -- assembly D_i^p B-spline family: D_i^p = alpha * basis_w_0
		        alpha_i = coeffDspan(V, i1)

		        v_m = 0.0
		        for g1 in range(0, k1):
		        	bi_0 = basis_1[ie1, il_1, 0, g1]
		        	bj_0 = basis_1[ie1, jl_1, 0, g1]
		        	di_0 = bi_0 * alpha_i
		        	dj_0 = bj_0 * alpha_j
		        	wvol = weights_1[ie1, g1]
		        	v_m += di_0 * dj_0 * wvol
		            
		        mass[i1, j1 - i1] += v_m
	return mass
示例#4
0
def assemblyMassMatrix(V):
	"""
		Assembly the mass matrix of the space V
			
			Entries:
			--------
				
				V: SplineSpace
			
			Output:
			-------
				
				mass : StencilMatrix - the mass matrix
	"""
	
	# ... sizes
	[s1] = V.vector_space.starts
	[e1] = V.vector_space.ends
	[p1] = V.vector_space.pads

	k1        = V.quad_order
	spans_1   = V.spans
	basis_1   = V.quad_basis
	weights_1 = V.quad_weights
	# ...

	# ... data structure
	mass      = StencilMatrix( V.vector_space, V.vector_space )
	# ...

	# ... build matrices
	for ie1 in range(s1, e1+1-p1):
		i_span_1 = spans_1[ie1]
		for il_1 in range(0, p1+1):
		    for jl_1 in range(0, p1+1):
		        i1 = i_span_1 - p1 + il_1
		        j1 = i_span_1 - p1 + jl_1

		        v_m = 0.0
		        for g1 in range(0, k1):
		            bi_0 = basis_1[ie1, il_1, 0, g1]

		            bj_0 = basis_1[ie1, jl_1, 0, g1]
		            
		            wvol = weights_1[ie1, g1]

		            v_m += bi_0 * bj_0 * wvol
		            
		        mass[i1, j1 - i1] += v_m
	# ...

	# ...
	return mass
示例#5
0
    def __init__(self, V):
        """
			Entry:
			------
				V: SplineSpace used
		"""
        # ... sizes
        [s1] = V.vector_space.starts
        [e1] = V.vector_space.ends
        [p1] = V.vector_space.pads

        k1 = V.quad_order
        spans_1 = V.spans
        basis_1 = V.quad_basis
        weights_1 = V.quad_weights
        # ...

        # ... data structure
        stiffness = StencilMatrix(V.vector_space, V.vector_space)
        # ...

        # ... build matrices
        for ie1 in range(s1, e1 + 1 - p1):
            i_span_1 = spans_1[ie1]
            for il_1 in range(0, p1 + 1):
                for jl_1 in range(0, p1 + 1):
                    i1 = i_span_1 - p1 + il_1
                    j1 = i_span_1 - p1 + jl_1

                    v_s = 0.0
                    for g1 in range(0, k1):
                        bi_x = basis_1[ie1, il_1, 1, g1]

                        bj_x = basis_1[ie1, jl_1, 1, g1]

                        wvol = weights_1[ie1, g1]

                        v_s += (bi_x * bj_x) * wvol

                    stiffness[i1, j1 - i1] += v_s
        # ...

        # ...

        self._stiff = stiffness
示例#6
0
def assembly(V, kernel):

    # ... sizes
    [s1, s2] = V.vector_space.starts
    [e1, e2] = V.vector_space.ends
    [p1, p2] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2] = [W.spans for W in V.spaces]
    [basis_1, basis_2] = [W.basis for W in V.spaces]
    [weights_1, weights_2] = [W.weights for W in V.spaces]
    [points_1, points_2] = [W.points for W in V.spaces]
    # ...

    # ... data structure
    M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... element matrix
    mat = zeros((p1 + 1, p2 + 1, 2 * p1 + 1, 2 * p2 + 1), order='F')
    # ...

    # ... build matrices
    for ie1 in range(s1, e1 + 1 - p1):
        for ie2 in range(s2, e2 + 1 - p2):
            i_span_1 = spans_1[ie1]
            i_span_2 = spans_2[ie2]

            bs1 = basis_1[:, :, :, ie1]
            bs2 = basis_2[:, :, :, ie2]
            w1 = weights_1[:, ie1]
            w2 = weights_2[:, ie2]
            kernel(p1, p2, k1, k2, bs1, bs2, w1, w2, mat)

            i1 = i_span_1 - p1 - 1
            i2 = i_span_2 - p2 - 1

            M[i1:i1 + p1 + 1, i2:i2 + p2 + 1, :, :] += mat[:, :, :, :]
示例#7
0
def assemble_matrix_1d(V, kernel, args=None, M=None):

    # ... sizes
    [s1] = V.vector_space.starts
    [e1] = V.vector_space.ends
    [p1] = V.vector_space.pads

    k1 = V.quad_order
    spans_1 = V.spans
    basis_1 = V.basis
    weights_1 = V.weights
    # ...

    # ... data structure if not given
    if M is None:
        M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... element matrix
    mat = np.zeros((p1+1,2*p1+1), order='F')
    # ...

    if args is None:
        _kernel = kernel
    else:
        _kernel = lambda p1, k1, bs, w, mat: kernel(p1, k1, bs, w, mat, *args)

    # ... build matrices
    for ie1 in range(s1, e1+1-p1):
        i_span_1 = spans_1[ie1]

        bs = basis_1[:, :, :, ie1]
        w = weights_1[:, ie1]
        _kernel(p1, k1, bs, w, mat)
        s1 = i_span_1 - p1 - 1
        M._data[s1:s1+p1+1,:] += mat[:,:]
    # ...

    return M
示例#8
0
# ... numbers of elements and degres
n1 = 8
n2 = 4
p1 = 2
p2 = 1
# ...

# ... Vector Spaces
V = StencilVectorSpace([n1, n2], [p1, p2], [False, False])
V1 = StencilVectorSpace([n1], [p1], [False])
V2 = StencilVectorSpace([n2], [p2], [False])

# ... Inputs
X0 = StencilVector(V)
A = StencilMatrix(V1, V1)
B = StencilMatrix(V2, V2)
# ...

# ... Fill in A, B and X
utils.populate_1d_matrix(A, 5.)
utils.populate_1d_matrix(B, 6.)
utils.populate_2d_vector(X0)
# ...

# ..

Y = kron_dot(B, A, X0)
X = kron_solve(B, A, Y)

print('X0 =  \n', X0._data)
示例#9
0
def assemblyMassMatrix2D(V):
    """
	 	Require:
	 	--------
	 		@V is a FemTensor V= (V1, V2) with @V1, @V2 are FemSpace
	
		Returns:
		--------
			@M is a StencilMatrix - the mass matrix for V space
	"""

    # ... sizes
    [s1, s2] = V.vector_space.starts
    [e1, e2] = V.vector_space.ends
    [p1, p2] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2] = [W.spans for W in V.spaces]
    [basis_1, basis_2] = [W.quad_basis for W in V.spaces]
    [weights_1, weights_2] = [W.quad_weights for W in V.spaces]
    [points_1, points_2] = [W.quad_points for W in V.spaces]

    # ... data structure
    M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... build matrices
    for ie1 in range(s1, e1 + 1 - p1):
        for ie2 in range(s2, e2 + 1 - p2):
            i_span_1 = spans_1[ie1]
            i_span_2 = spans_2[ie2]
            for il_1 in range(0, p1 + 1):
                for jl_1 in range(0, p1 + 1):
                    for il_2 in range(0, p2 + 1):
                        for jl_2 in range(0, p2 + 1):

                            i1 = i_span_1 - p1 - 1 + il_1
                            j1 = i_span_1 - p1 - 1 + jl_1

                            i2 = i_span_2 - p2 - 1 + il_2
                            j2 = i_span_2 - p2 - 1 + jl_2

                            v_m = 0.0
                            for g1 in range(0, k1):
                                for g2 in range(0, k2):
                                    bi_0 = basis_1[ie1, il_1, 0,
                                                   g1] * basis_2[ie1, il_2, 0,
                                                                 g2]
                                    bj_0 = basis_1[ie1, jl_1, 0,
                                                   g1] * basis_2[ie2, jl_2, 0,
                                                                 g2]

                                    wvol = weights_1[ie1, g1] * weights_2[ie2,
                                                                          g2]

                                    v_m = v_m + bi_0 * bj_0 * wvol
                            M[i1, i2, j1 - i1, j2 - i2] += v_m
    # ...
    return M
示例#10
0
def assemblyMassMatrixDspan2D(V):
    """
		We compute the mass matrix for the span 
			$$ D_i^{p} = \frac{p+1}{t_{i+p+1} - t_i} N_i^p $$
			
		where $N_i^p$ are the default splines of V space
	 	
	 	Require:
	 	--------
	 		@V is a FemTensor V= (V1, V2) with @V1, @V2 are FemSpace
	
		Returns:
		--------
			@M is a StencilMatrix - the mass matrix for D_i^p span	
	"""

    # ... sizes
    [s1, s2] = V.vector_space.starts
    [e1, e2] = V.vector_space.ends
    [p1, p2] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2] = [W.spans for W in V.spaces]
    [basis_1, basis_2] = [W.quad_basis for W in V.spaces]
    [weights_1, weights_2] = [W.quad_weights for W in V.spaces]
    [points_1, points_2] = [W.quad_points for W in V.spaces]
    [V_1, V_2] = [W for W in V.spaces]

    # ... data structure
    M = StencilMatrix(V.vector_space, V.vector_space)
    # ...

    # ... build matrices
    for ie1 in range(s1, e1 + 1 - p1):
        for ie2 in range(s2, e2 + 1 - p2):
            i_span_1 = spans_1[ie1]
            i_span_2 = spans_2[ie2]
            for il_1 in range(0, p1 + 1):
                for jl_1 in range(0, p1 + 1):
                    for il_2 in range(0, p2 + 1):
                        for jl_2 in range(0, p2 + 1):
                            i1 = i_span_1 - p1 - 1 + il_1
                            j1 = i_span_1 - p1 - 1 + jl_1

                            i2 = i_span_2 - p2 - 1 + il_2
                            j2 = i_span_2 - p2 - 1 + jl_2

                            v_s = 0.0
                            for g1 in range(0, k1):
                                for g2 in range(0, k2):
                                    di1_0 = coefficients_linear_combinaison(
                                        V_1, i1) * basis_1[ie1, il_1, 0, g1]
                                    di2_0 = coefficients_linear_combinaison(
                                        V_2, i2) * basis_2[ie1, il_2, 0, g1]
                                    bi_0 = di1_0 * di2_0

                                    d_j1 = basis_1[
                                        ie1, jl_1, 0,
                                        g1] * coefficients_linear_combinaison(
                                            V_1, j1)
                                    d_j2 = basis_2[
                                        ie2, jl_2, 0,
                                        g2] * coefficients_linear_combinaison(
                                            V_2, j2)
                                    bj_0 = d_j1 * d_j2

                                    wvol = weights_1[ie1, g1] * weights_2[ie2,
                                                                          g2]

                                    v_s = v_s + bi_0 * bj_0 * wvol
                            M[i1, i2, j1 - i1, j2 - i2] += v_s
    # ...
    return M
示例#11
0
# ... numbers of elements and degres
n1 = 8
n2 = 4
p1 = 3
p2 = 1
# ...

# ... Vector Spaces
V = StencilVectorSpace([n1, n2], [p1, p2], [False, False])
V1 = StencilVectorSpace([n1], [p1], [False])
V2 = StencilVectorSpace([n2], [p2], [False])

# ... Inputs
Y = StencilVector(V)
A = StencilMatrix(V1, V1)
B = StencilMatrix(V2, V2)
# ...

# ... Fill in A, B and X
utils.populate_1d_matrix(A, 5.)
utils.populate_1d_matrix(B, 6.)
utils.populate_2d_vector(Y)
# ...

# ..
X = kron_solve(B, A, Y)

X_ref = utils.kron_solve_ref(B, A, Y)

print('A =  \n', A.toarray())
示例#12
0
def assemble_matrix_1d(V, kernel, args=None, M=None, fields={}):

    from spl.fem.vector import VectorBasicSobolevSpace

    # ...
    is_block = False
    if isinstance(V, VectorBasicSobolevSpace):
        if not (V.is_block):
            raise NotImplementedError('Expecting a scalar or vector space.')

        is_block = True
    # ...

    # ... data structure if not given
    if M is None:
        from spl.linalg.stencil import StencilVector, StencilMatrix

        # scalar case
        if not is_block:
            M = StencilMatrix(V.vector_space, V.vector_space)
        else:
            n_components = len(V.spaces)

            V = V.spaces[0]

            M = []
            for i in range(0, n_components):
                line = []
                for j in range(0, n_components):
                    line.append(StencilMatrix(V.vector_space, V.vector_space))
                M.append(line)
    # ...

    # ... sizes
    [s1] = V.vector_space.starts
    [e1] = V.vector_space.ends
    [p1] = V.vector_space.pads

    k1 = V.quad_order
    spans_1 = V.spans
    basis_1 = V.basis
    weights_1 = V.weights
    points_1 = V.points
    # ...

    # ... element matrix
    if not is_block:
        mat = zeros((p1 + 1, 2 * p1 + 1), order='F')
    else:
        mats = []
        for i in range(0, n_components):
            line = []
            for j in range(0, n_components):
                line.append(zeros((p1 + 1, 2 * p1 + 1), order='F'))
            mats.append(line)
    # ...

    # ... build matrices
    # TODO this is only for the parallel case


#    for ie1 in range(s1, e1+1-p1):
    for ie1 in range(0, V.ncells):
        i_span_1 = spans_1[ie1]

        bs = basis_1[:, :, :, ie1]
        w = weights_1[:, ie1]
        u = points_1[:, ie1]

        s1 = i_span_1 - p1 - 1

        field_coeffs = []
        for k, f in list(fields.items()):
            field_coeffs.append(f.coeffs[s1:s1 + p1 + 1])

        if not is_block:
            if args is None:
                kernel(p1, k1, bs, u, w, mat, *field_coeffs)

            else:
                kernel(p1, k1, bs, u, w, mat, *args, *field_coeffs)

        else:
            _mats = []
            for i in range(0, n_components):
                for j in range(0, n_components):
                    _mats.append(mats[i][j])

            if args is None:
                kernel(p1, k1, bs, u, w, *_mats, *field_coeffs)

            else:
                kernel(p1, k1, bs, u, w, *_mats, *args, *field_coeffs)

        if not is_block:
            M._data[s1:s1 + p1 + 1, :] += mat[:, :]
        else:
            for i in range(0, n_components):
                for j in range(0, n_components):
                    _mat = mats[i][j]
                    _M = M[i][j]

            _M._data[s1:s1 + p1 + 1, :] += _mat[:, :]
    # ...

    return M
示例#13
0
def assemble_matrix_3d(V, kernel, args=None, M=None, fields={}):

    from spl.fem.vector import VectorBasicSobolevSpace

    # ...
    is_block = False
    if isinstance(V, VectorBasicSobolevSpace):
        if not (V.is_block):
            raise NotImplementedError('Expecting a scalar or vector space.')

        is_block = True
    # ...

    # ... data structure if not given
    if M is None:
        from spl.linalg.stencil import StencilVector, StencilMatrix

        # scalar case
        if not is_block:
            M = StencilMatrix(V.vector_space, V.vector_space)
        else:
            n_components = len(V.spaces)

            V = V.spaces[0]

            M = []
            for i in range(0, n_components):
                line = []
                for j in range(0, n_components):
                    line.append(StencilMatrix(V.vector_space, V.vector_space))
                M.append(line)
    # ...

    # ... sizes
    [s1, s2, s3] = V.vector_space.starts
    [e1, e2, e3] = V.vector_space.ends
    [p1, p2, p3] = V.vector_space.pads
    # ...

    # ... seetings
    [k1, k2, k3] = [W.quad_order for W in V.spaces]
    [spans_1, spans_2, spans_3] = [W.spans for W in V.spaces]
    [basis_1, basis_2, basis_3] = [W.basis for W in V.spaces]
    [weights_1, weights_2, weights_3] = [W.weights for W in V.spaces]
    [points_1, points_2, points_3] = [W.points for W in V.spaces]
    # ...

    # ... element matrix
    if not is_block:
        mat = zeros(
            (p1 + 1, p2 + 1, p3 + 1, 2 * p1 + 1, 2 * p2 + 1, 2 * p3 + 1),
            order='F')
    else:
        mats = []
        for i in range(0, n_components):
            line = []
            for j in range(0, n_components):
                line.append(
                    zeros((p1 + 1, p2 + 1, p3 + 1, 2 * p1 + 1, 2 * p2 + 1,
                           2 * p3 + 1),
                          order='F'))
            mats.append(line)
    # ...

    # ... build matrices
    # TODO this is only for the parallel case
#    for ie1 in range(s1, e1+1-p1):
#        for ie2 in range(s2, e2+1-p2):
#            for ie3 in range(s3, e3+1-p3):
    for ie1 in range(0, V.ncells[0]):
        for ie2 in range(0, V.ncells[1]):
            for ie3 in range(0, V.ncells[2]):
                i_span_1 = spans_1[ie1]
                i_span_2 = spans_2[ie2]
                i_span_3 = spans_3[ie3]

                bs1 = basis_1[:, :, :, ie1]
                bs2 = basis_2[:, :, :, ie2]
                bs3 = basis_3[:, :, :, ie3]
                w1 = weights_1[:, ie1]
                w2 = weights_2[:, ie2]
                w3 = weights_3[:, ie3]
                u1 = points_1[:, ie1]
                u2 = points_2[:, ie2]
                u3 = points_3[:, ie3]

                s1 = i_span_1 - p1 - 1
                s2 = i_span_2 - p2 - 1
                s3 = i_span_3 - p3 - 1

                field_coeffs = []
                for k, f in list(fields.items()):
                    field_coeffs.append(f.coeffs[s1:s1 + p1 + 1,
                                                 s2:s2 + p2 + 1,
                                                 s3:s3 + p3 + 1])

                if not is_block:
                    if args is None:
                        kernel(p1, p2, p3, k1, k2, k3, bs1, bs2, bs3, u1, u2,
                               u3, w1, w2, w3, mat, *field_coeffs)

                    else:
                        kernel(p1, p2, p3, k1, k2, k3, bs1, bs2, bs3, u1, u2,
                               u3, w1, w2, w3, mat, *args, *field_coeffs)

                else:
                    _mats = []
                    for i in range(0, n_components):
                        for j in range(0, n_components):
                            _mats.append(mats[i][j])

                    if args is None:
                        kernel(p1, p2, p3, k1, k2, k3, bs1, bs2, bs3, u1, u2,
                               u3, w1, w2, w3, *_mats, *field_coeffs)
                    else:
                        kernel(p1, p2, p3, k1, k2, k3, bs1, bs2, bs3, u1, u2,
                               u3, w1, w2, w3, *_mats, *args, *field_coeffs)

                if not is_block:
                    M._data[s1:s1 + p1 + 1, s2:s2 + p2 + 1,
                            s3:s3 + p3 + 1, :, :, :] += mat[:, :, :, :, :, :]
                else:
                    for i in range(0, n_components):
                        for j in range(0, n_components):
                            _mat = mats[i][j]
                            _M = M[i][j]

                            _M._data[s1:s1 + p1 + 1, s2:s2 + p2 + 1, s3:s3 +
                                     p3 + 1, :, :, :] += _mat[:, :, :, :, :, :]
    # ...

    return M