def test_05(self): D = cp.random.randn(4, 32) s = cp.random.randn(64) Wg = np.concatenate((cp.eye(16), cp.eye(16)), axis=-1) lmbda = 0.1 mu = 0.01 gamma = 0.01 # ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options({ 'Verbose': False, 'MaxMainIter': 10 }) try: b = cbpdnin.ConvBPDNInhib(D, s, Wg=Wg, lmbda=lmbda, mu=mu, gamma=gamma, opt=opt, dimN=1) b.solve() except Exception as e: print(e) assert 0
def test_01(self): D = cp.random.randn(4, 4, 32) s = cp.random.randn(8, 8) # ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options({ 'Verbose': False, 'MaxMainIter': 10 }) try: b = cbpdnin.ConvBPDNInhib(D, s, opt=opt) b.solve() except Exception as e: print(e) assert 0
def test_02(self): D = cp.random.randn(4, 4, 32) s = cp.random.randn(8, 8) Wg = cp.concatenate((cp.eye(16), cp.eye(16)), axis=-1) lmbda = 0.1 # ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options({ 'Verbose': False, 'MaxMainIter': 10 }) try: b = cbpdnin.ConvBPDNInhib(D, s, Wg=Wg, lmbda=lmbda, opt=opt) b.solve() except Exception as e: print(e) assert 0
'rho': 100, 'AutoRho': {'Enabled': False}}) """ Initialise and run CSC solver. """ Wg = np.eye(24) Wg = np.repeat(Wg, M, axis=1) if CUPY: D = np2cp(D) Wg = np2cp(Wg) audio = np2cp(audio) b = cbpdnin.ConvBPDNInhib(D.T, audio, Wg, int( 0.20*16000), None, lmbda, mu, gamma, opt, dimK=None, dimN=1) X = b.solve() if CUPY: X = cp2np(X) print("ConvBPDN solve time: %.2fs" % b.timer.elapsed('solve')) """ Reconstruct image from sparse representation. """ recon = b.reconstruct().squeeze() if CUPY: