def __init__(self, normalizer, policy, env, smach=None, TGP=None, spot=None, gui=False): self.normalizer = normalizer self.policy = policy self.state_dim = self.policy.state_dim self.action_dim = self.policy.action_dim self.env = env self.max_action = float(self.env.action_space.high[0]) self.successes = 0 self.phase = 0 self.desired_velocity = 0.5 self.desired_rate = 0.0 self.flip = 0 self.increment = 0 self.scaledown = True self.type = "Stop" self.smach = smach if smach is not None: self.BaseClearanceHeight = self.smach.ClearanceHeight self.BasePenetrationDepth = self.smach.PenetrationDepth self.TGP = TGP self.spot = spot if gui: self.g_u_i = GUI(self.env.spot.quadruped) else: self.g_u_i = None self.action_history = [] self.true_action_history = []
def main(): """ The main() function. """ print("STARTING SPOT TEST ENV") seed = 0 max_timesteps = 4e6 file_name = "spot_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotGymEnv(render=True, on_rack=False) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() g_u_i = GUI() spot = SpotModel() T_bf = spot.WorldToFoot print("STARTED SPOT TEST ENV") t = 0 while t < (int(max_timesteps)): # GUI: x, y, z | r, p , y pos, orn, _, _, _, _ = g_u_i.UserInput() # Get Roll, Pitch, Yaw joint_angles = spot.IK(orn, pos, T_bf) action = joint_angles.reshape(-1) action = env.action_space.sample() next_state, reward, done, _ = env.step(action) # time.sleep(1.0) t += 1 env.close() print(joint_angles)
def main(): """ The main() function. """ print("STARTING SPOT TEST ENV") seed = 0 max_timesteps = 4e6 # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) if ARGS.DebugRack: on_rack = True else: on_rack = False if ARGS.DebugPath: draw_foot_path = True else: draw_foot_path = False if ARGS.HeightField: height_field = True else: height_field = False env = spotBezierEnv(render=True, on_rack=on_rack, height_field=height_field, draw_foot_path=draw_foot_path) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) state = env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf0 = spot.WorldToFoot T_bf = copy.deepcopy(T_bf0) bzg = BezierGait(dt=env._time_step) bz_step = BezierStepper(dt=env._time_step, mode=0) action = env.action_space.sample() FL_phases = [] FR_phases = [] BL_phases = [] BR_phases = [] yaw = 0.0 print("STARTED SPOT TEST ENV") t = 0 while t < (int(max_timesteps)): bz_step.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine( ) pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = g_u_i.UserInput( ) yaw = env.return_yaw() P_yaw = 5.0 if ARGS.AutoYaw: YawRate += -yaw * P_yaw # print("YAW RATE: {}".format(YawRate)) # TEMP bz_step.StepLength = StepLength bz_step.LateralFraction = LateralFraction bz_step.YawRate = YawRate bz_step.StepVelocity = StepVelocity contacts = state[-4:] FL_phases.append(env.spot.LegPhases[0]) FR_phases.append(env.spot.LegPhases[1]) BL_phases.append(env.spot.LegPhases[2]) BR_phases.append(env.spot.LegPhases[3]) # Get Desired Foot Poses T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_bf0, T_bf, ClearanceHeight, PenetrationDepth, contacts) joint_angles = spot.IK(orn, pos, T_bf) env.pass_joint_angles(joint_angles.reshape(-1)) # Get External Observations env.spot.GetExternalObservations(bzg, bz_step) # Step state, reward, done, _ = env.step(action) if done: print("DONE") if ARGS.AutoReset: env.reset() # plt.plot() # plt.plot(FL_phases, label="FL") # plt.plot(FR_phases, label="FR") # plt.plot(BL_phases, label="BL") # plt.plot(BR_phases, label="BR") # plt.xlabel("dt") # plt.ylabel("value") # plt.title("Leg Phases") # plt.legend() # plt.show() # time.sleep(1.0) t += 1 env.close() print(joint_angles)
def main(): """ The main() function. """ # Hold mp pipes mp.freeze_support() print("STARTING SPOT TRAINING ENV") seed = 0 max_timesteps = 4e6 eval_freq = 1e1 save_model = True file_name = "spot_ars_" if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=False, on_rack=False, height_field=height_field, draw_foot_path=False, contacts=contacts) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf = spot.WorldToFoot bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot) agent_num = 0 if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) env.reset(agent.desired_velocity, agent.desired_rate) episode_reward = 0 episode_timesteps = 0 episode_num = 0 # Create mp pipes num_processes = policy.num_deltas processes = [] childPipes = [] parentPipes = [] # Store mp pipes for pr in range(num_processes): parentPipe, childPipe = Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) # Start multiprocessing # Start multiprocessing for proc_num in range(num_processes): p = mp.Process(target=ParallelWorker, args=(childPipes[proc_num], env, state_dim)) p.start() processes.append(p) print("STARTED SPOT TRAINING ENV") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout episode_reward, episode_timesteps = agent.train_parallel(parentPipes) t += episode_timesteps # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {:.2f} REWARD PER STEP: {:.2f}" .format(t + 1, episode_num, episode_timesteps, episode_reward, episode_reward / float(episode_timesteps))) # Evaluate episode if (episode_num + 1) % eval_freq == 0: if save_model: agent.save(models_path + "/" + str(file_name) + str(episode_num)) # replay_buffer.save(t) episode_num += 1 # Close pipes and hence envs for parentPipe in parentPipes: parentPipe.send([_CLOSE, "pay2"]) for p in processes: p.join()