def __init__(self, n_neurons, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, constraints=None, label=None, tau_m=default_parameters['tau_m'], cm=default_parameters['cm'], v_rest=default_parameters['v_rest'], v_reset=default_parameters['v_reset'], v_thresh=default_parameters['v_thresh'], tau_syn_E=default_parameters['tau_syn_E'], tau_syn_E2=default_parameters['tau_syn_E2'], tau_syn_I=default_parameters['tau_syn_I'], tau_refrac=default_parameters['tau_refrac'], i_offset=default_parameters['i_offset'], v_init=None): # Instantiate the parent classes AbstractDualExponentialVertex.__init__( self, n_neurons=n_neurons, tau_syn_E=tau_syn_E, tau_syn_E2=tau_syn_E2, tau_syn_I=tau_syn_I, machine_time_step=machine_time_step) AbstractIntegrateAndFireProperties.__init__( self, atoms=n_neurons, cm=cm, tau_m=tau_m, i_offset=i_offset, v_init=v_init, v_reset=v_reset, v_rest=v_rest, v_thresh=v_thresh, tau_refrac=tau_refrac) AbstractPopulationVertex.__init__( self, n_neurons=n_neurons, n_params=10, n_global_params=0, label=label, binary="IF_curr_exp_dual.aplx", constraints=constraints, max_atoms_per_core=(IFCurrentDualExponentialPopulation ._model_based_max_atoms_per_core), machine_time_step=machine_time_step, timescale_factor=timescale_factor, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma)
def __init__(self, n_neurons, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, constraints=None, label=None, tau_m=20.0, cm=1.0, v_rest=-65.0, v_reset=-65.0, v_thresh=-50.0, tau_syn_E=5.0, tau_syn_E2=5.0, tau_syn_I=5.0, tau_refrac=0.1, i_offset=0, v_init=None): # Instantiate the parent classes AbstractDualExponentialVertex.__init__( self, n_neurons=n_neurons, tau_syn_E=tau_syn_E, tau_syn_E2=tau_syn_E2, tau_syn_I=tau_syn_I, machine_time_step=machine_time_step) AbstractIntegrateAndFireProperties.__init__( self, atoms=n_neurons, cm=cm, tau_m=tau_m, i_offset=i_offset, v_init=v_init, v_reset=v_reset, v_rest=v_rest, v_thresh=v_thresh, tau_refrac=tau_refrac) AbstractPopulationVertex.__init__( self, n_neurons=n_neurons, n_params=10, label=label, binary="IF_curr_exp_dual.aplx", constraints=constraints, max_atoms_per_core=(IFCurrentDualExponentialPopulation ._model_based_max_atoms_per_core), machine_time_step=machine_time_step, timescale_factor=timescale_factor, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma) self._executable_constant = \ IFCurrentDualExponentialPopulation.CORE_APP_IDENTIFIER
def __init__(self, n_neurons, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, constraints=None, label=None, tau_m=20, cm=1.0, e_rev_E=0.0, e_rev_I=-70.0, v_rest=-65.0, v_reset=-65.0, v_thresh=-50.0, tau_syn_E=5.0, tau_syn_I=5.0, tau_refrac=0.1, i_offset=0, v_init=None): # Instantiate the parent classes AbstractConductanceVertex.__init__(self, n_neurons, e_rev_E=e_rev_E, e_rev_I=e_rev_I) AbstractExponentialPopulationVertex.__init__( self, n_neurons=n_neurons, tau_syn_E=tau_syn_E, tau_syn_I=tau_syn_I, machine_time_step=machine_time_step) AbstractIntegrateAndFireProperties.__init__( self, atoms=n_neurons, cm=cm, tau_m=tau_m, i_offset=i_offset, v_init=v_init, v_reset=v_reset, v_rest=v_rest, v_thresh=v_thresh, tau_refrac=tau_refrac) AbstractPopulationVertex.__init__( self, n_neurons=n_neurons, n_params=12, label=label, max_atoms_per_core=(IFConductanceExponentialPopulation ._model_based_max_atoms_per_core), binary="IF_cond_exp.aplx", constraints=constraints, machine_time_step=machine_time_step, timescale_factor=timescale_factor, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma, weight_scale=AbstractConductanceVertex.WEIGHT_SCALE)
def __init__(self, n_neurons, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, constraints=None, label=None, tau_m=20.0, cm=1.0, v_rest=-65.0, v_reset=-65.0, v_thresh=-50.0, tau_syn_E=5.0, tau_syn_E2=5.0, tau_syn_I=5.0, tau_refrac=0.1, i_offset=0, v_init=None): # Instantiate the parent classes AbstractDualExponentialVertex.__init__( self, n_neurons=n_neurons, tau_syn_E=tau_syn_E, tau_syn_E2=tau_syn_E2, tau_syn_I=tau_syn_I, machine_time_step=machine_time_step) AbstractIntegrateAndFireProperties.__init__(self, atoms=n_neurons, cm=cm, tau_m=tau_m, i_offset=i_offset, v_init=v_init, v_reset=v_reset, v_rest=v_rest, v_thresh=v_thresh, tau_refrac=tau_refrac) AbstractPopulationVertex.__init__( self, n_neurons=n_neurons, n_params=10, label=label, binary="IF_curr_exp_dual.aplx", constraints=constraints, max_atoms_per_core=(IFCurrentDualExponentialPopulation. _model_based_max_atoms_per_core), machine_time_step=machine_time_step, timescale_factor=timescale_factor, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma)