def __init__(self, tau_m=20.0, cm=1.0, v_rest=-65.0, v_reset=-65.0, v_thresh=-50.0, tau_syn_E=5.0, tau_syn_I=5.0, tau_refrac=0.1, i_offset=0.0, e_rev_E=0.0, e_rev_I=-70.0, du_th=0.5, tau_th=20.0, v=-65.0, isyn_exc=0.0, isyn_inh=0.0): # pylint: disable=too-many-arguments, too-many-locals neuron_model = NeuronModelLeakyIntegrateAndFire( v, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac) synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc, isyn_inh) input_type = InputTypeConductance(e_rev_E, e_rev_I) threshold_type = ThresholdTypeMaassStochastic(du_th, tau_th, v_thresh) super(IFCondExpStoc, self).__init__(model_name="IF_cond_exp_stoc", binary="IF_cond_exp_stoc.aplx", neuron_model=neuron_model, input_type=input_type, synapse_type=synapse_type, threshold_type=threshold_type)
def __init__(self, a=0.02, b=0.2, c=-65.0, d=2.0, i_offset=0.0, u=-14.0, v=-70.0, tau_syn_E=5.0, tau_syn_I=5.0, e_rev_E=0.0, e_rev_I=-70.0, isyn_exc=0.0, isyn_inh=0.0): # pylint: disable=too-many-arguments, too-many-locals neuron_model = NeuronModelIzh(a, b, c, d, v, u, i_offset) synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc, isyn_inh) input_type = InputTypeConductance(e_rev_E, e_rev_I) threshold_type = ThresholdTypeStatic(_IZK_THRESHOLD) super().__init__(model_name="IZK_cond_exp", binary="IZK_cond_exp.aplx", neuron_model=neuron_model, input_type=input_type, synapse_type=synapse_type, threshold_type=threshold_type)
def __init__(self, n_neurons, spikes_per_second=AbstractPopulationVertex. non_pynn_default_parameters['spikes_per_second'], ring_buffer_sigma=AbstractPopulationVertex. non_pynn_default_parameters['ring_buffer_sigma'], incoming_spike_buffer_size=AbstractPopulationVertex. non_pynn_default_parameters['incoming_spike_buffer_size'], constraints=AbstractPopulationVertex. non_pynn_default_parameters['constraints'], label=AbstractPopulationVertex. non_pynn_default_parameters['label'], tau_m=default_parameters['tau_m'], cm=default_parameters['cm'], v_rest=default_parameters['v_rest'], v_reset=default_parameters['v_reset'], v_thresh=default_parameters['v_thresh'], tau_syn_E=default_parameters['tau_syn_E'], tau_syn_I=default_parameters['tau_syn_I'], tau_refrac=default_parameters['tau_refrac'], i_offset=default_parameters['i_offset'], e_rev_E=default_parameters['e_rev_E'], e_rev_I=default_parameters['e_rev_I'], du_th=default_parameters['du_th'], tau_th=default_parameters['tau_th'], v_init=initialize_parameters['v_init'], isyn_exc=default_parameters['isyn_exc'], isyn_inh=default_parameters['isyn_inh']): # pylint: disable=too-many-arguments, too-many-locals neuron_model = NeuronModelLeakyIntegrateAndFire( n_neurons, v_init, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac) synapse_type = SynapseTypeExponential(n_neurons, tau_syn_E, tau_syn_I, initial_input_exc=isyn_exc, initial_input_inh=isyn_inh) input_type = InputTypeConductance(n_neurons, e_rev_E, e_rev_I) threshold_type = ThresholdTypeMaassStochastic(n_neurons, du_th, tau_th, v_thresh) super(IFCondExpStoc, self).__init__( n_neurons=n_neurons, binary="IF_cond_exp_stoc.aplx", label=label, max_atoms_per_core=IFCondExpStoc._model_based_max_atoms_per_core, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma, incoming_spike_buffer_size=incoming_spike_buffer_size, model_name="IF_cond_exp_stoc", neuron_model=neuron_model, input_type=input_type, synapse_type=synapse_type, threshold_type=threshold_type, constraints=constraints)
def __init__( self, n_neurons, spikes_per_second=_apv_defs['spikes_per_second'], ring_buffer_sigma=_apv_defs['ring_buffer_sigma'], incoming_spike_buffer_size=_apv_defs['incoming_spike_buffer_size'], constraints=_apv_defs['constraints'], label=_apv_defs['label'], a=default_parameters['a'], b=default_parameters['b'], c=default_parameters['c'], d=default_parameters['d'], i_offset=default_parameters['i_offset'], u_init=initialize_parameters['u_init'], v_init=initialize_parameters['v_init'], tau_syn_E=default_parameters['tau_syn_E'], tau_syn_I=default_parameters['tau_syn_I'], e_rev_E=default_parameters['e_rev_E'], e_rev_I=default_parameters['e_rev_I'], isyn_exc=default_parameters['isyn_exc'], isyn_inh=default_parameters['isyn_inh']): # pylint: disable=too-many-arguments, too-many-locals neuron_model = NeuronModelIzh(n_neurons, a, b, c, d, v_init, u_init, i_offset) synapse_type = SynapseTypeExponential(n_neurons, tau_syn_E, tau_syn_I, isyn_exc, isyn_inh) input_type = InputTypeConductance(n_neurons, e_rev_E, e_rev_I) threshold_type = ThresholdTypeStatic(n_neurons, _IZK_THRESHOLD) super(IzkCondExpBase, self).__init__( n_neurons=n_neurons, binary="IZK_cond_exp.aplx", label=label, max_atoms_per_core=IzkCondExpBase._model_based_max_atoms_per_core, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma, incoming_spike_buffer_size=incoming_spike_buffer_size, model_name="IZK_cond_exp", neuron_model=neuron_model, input_type=input_type, synapse_type=synapse_type, threshold_type=threshold_type, constraints=constraints)
def __init__( self, n_neurons, spikes_per_second=AbstractPopulationVertex. non_pynn_default_parameters['spikes_per_second'], ring_buffer_sigma=AbstractPopulationVertex. non_pynn_default_parameters['ring_buffer_sigma'], incoming_spike_buffer_size=AbstractPopulationVertex. non_pynn_default_parameters['incoming_spike_buffer_size'], constraints=AbstractPopulationVertex. non_pynn_default_parameters['constraints'], label=AbstractPopulationVertex.non_pynn_default_parameters['label'], # TODO: neuron model parameters (add / remove as required) # neuron model parameters my_parameter=default_parameters['my_parameter'], i_offset=default_parameters['i_offset'], # TODO: threshold types parameters (add / remove as required) # threshold types parameters v_thresh=default_parameters['v_thresh'], # TODO: synapse type parameters (add /remove as required) # synapse type parameters tau_syn_E=default_parameters['tau_syn_E'], tau_syn_I=default_parameters['tau_syn_I'], isyn_exc=default_parameters['isyn_exc'], isyn_inh=default_parameters['isyn_inh'], # Add input type parameters for conductance e_rev_E=default_parameters['e_rev_E'], e_rev_I=default_parameters['e_rev_I'], # TODO: Optionally, you can add initial values for the state # variables; this is not technically done in PyNN v_init=initialize_parameters['v_init']): # TODO: create your neuron model class (change if required) # create your neuron model class neuron_model = MyNeuronModel(n_neurons, i_offset, my_parameter) # TODO: create your synapse type model class (change if required) # create your synapse type model synapse_type = SynapseTypeExponential(n_neurons, tau_syn_E, tau_syn_I, isyn_exc, isyn_inh) # TODO: create your input type model class (change if required) # create your input type model input_type = InputTypeConductance(n_neurons, e_rev_E, e_rev_I) # TODO: create your threshold type model class (change if required) # create your threshold type model threshold_type = ThresholdTypeStatic(n_neurons, v_thresh) # TODO: create your own additional inputs (change if required). # create your own additional inputs additional_input = None # instantiate the sPyNNaker system by initialising # the AbstractPopulationVertex AbstractPopulationVertex.__init__( # standard inputs, do not need to change. self, n_neurons=n_neurons, label=label, spikes_per_second=spikes_per_second, ring_buffer_sigma=ring_buffer_sigma, incoming_spike_buffer_size=incoming_spike_buffer_size, # TODO: Ensure the correct class is used below max_atoms_per_core=( MyModelCondExpBase._model_based_max_atoms_per_core), # These are the various model types neuron_model=neuron_model, input_type=input_type, synapse_type=synapse_type, threshold_type=threshold_type, additional_input=additional_input, # TODO: Give the model a name (shown in reports) model_name="MyModelCondExpBase", # TODO: Set this to the matching binary name binary="my_model_cond_exp.aplx")