示例#1
0
    def _write_synapse_parameters(self, spec, machine_vertex, machine_graph,
                                  graph_mapper, post_slices, post_slice_index,
                                  post_vertex_slice, input_type,
                                  machine_time_step):

        # Get the ring buffer shifts and scaling factors
        weight_scale = input_type.get_global_weight_scale()
        ring_buffer_shifts = self._get_ring_buffer_to_input_left_shifts(
            machine_vertex, machine_graph, graph_mapper, post_slices,
            post_slice_index, post_vertex_slice, machine_time_step,
            weight_scale)

        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.SYNAPSE_PARAMS.value)
        utility_calls.write_parameters_per_neuron(
            spec, post_vertex_slice,
            self._synapse_type.get_synapse_type_parameters())

        spec.write_array(ring_buffer_shifts)

        weight_scales = numpy.array([
            self._get_weight_scale(r) * weight_scale
            for r in ring_buffer_shifts
        ])
        return weight_scales
示例#2
0
 def regenerate_data_specification(self, spec, placement, machine_time_step,
                                   time_scale_factor, vertex_slice):
     spec.reserve_memory_region(
         region=POPULATION_BASED_REGIONS.SYNAPSE_PARAMS.value,
         size=self._get_synapse_params_size(vertex_slice),
         label='SynapseParams')
     spec.switch_write_focus(POPULATION_BASED_REGIONS.SYNAPSE_PARAMS.value)
     write_parameters_per_neuron(
         spec, vertex_slice,
         self._synapse_type.get_synapse_type_parameters())
示例#3
0
    def _write_synapse_parameters(
            self, spec, subvertex, subgraph, graph_mapper, post_slices,
            post_slice_index, post_vertex_slice, input_type):

        # Get the ring buffer shifts and scaling factors
        weight_scale = input_type.get_global_weight_scale()
        ring_buffer_shifts = self._get_ring_buffer_to_input_left_shifts(
            subvertex, subgraph, graph_mapper, post_slices, post_slice_index,
            post_vertex_slice, self._machine_time_step, weight_scale)

        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.SYNAPSE_PARAMS.value)
        utility_calls.write_parameters_per_neuron(
            spec, post_vertex_slice,
            self._synapse_type.get_synapse_type_parameters())

        spec.write_array(ring_buffer_shifts)

        weight_scales = numpy.array([
            self._get_weight_scale(r) * weight_scale
            for r in ring_buffer_shifts])
        return weight_scales
示例#4
0
    def _write_neuron_parameters(self, spec, key, vertex_slice):

        n_atoms = (vertex_slice.hi_atom - vertex_slice.lo_atom) + 1
        spec.comment(
            "\nWriting Neuron Parameters for {} Neurons:\n".format(n_atoms))

        # Set the focus to the memory region 2 (neuron parameters):
        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value)

        # Write whether the key is to be used, and then the key, or 0 if it
        # isn't to be used
        if key is None:
            spec.write_value(data=0)
            spec.write_value(data=0)
        else:
            spec.write_value(data=1)
            spec.write_value(data=key)

        # Write the number of neurons in the block:
        spec.write_value(data=n_atoms)

        # Write the size of the incoming spike buffer
        spec.write_value(data=self._incoming_spike_buffer_size)

        # Write the global parameters
        global_params = self._neuron_model.get_global_parameters()
        for param in global_params:
            spec.write_value(data=param.get_value(),
                             data_type=param.get_dataspec_datatype())

        # Write the neuron parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._neuron_model.get_neural_parameters())

        # Write the input type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._input_type.get_input_type_parameters())

        # Write the additional input parameters
        if self._additional_input is not None:
            utility_calls.write_parameters_per_neuron(
                spec, vertex_slice, self._additional_input.get_parameters())

        # Write the threshold type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice,
            self._threshold_type.get_threshold_parameters())
示例#5
0
    def _write_synapse_parameters(
            self, spec, subvertex, subgraph, graph_mapper, vertex_slice):

        # Get the ring buffer shifts and scaling factors
        ring_buffer_shifts = self._get_ring_buffer_to_input_left_shifts(
            subvertex, subgraph, graph_mapper, self._machine_time_step)
        weight_scales = [self._get_weight_scale(r) for r in ring_buffer_shifts]

        # update projections for future use
        in_partitioned_edges = subgraph.incoming_subedges_from_subvertex(
            subvertex)
        for partitioned_edge in in_partitioned_edges:
            partitioned_edge.weight_scales_setter(weight_scales)

        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.SYNAPSE_PARAMS.value)
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice,
            self._synapse_type.get_synapse_type_parameters())

        spec.write_array(ring_buffer_shifts)

        return weight_scales
    def _write_neuron_parameters(
            self, spec, key, vertex_slice):

        n_atoms = (vertex_slice.hi_atom - vertex_slice.lo_atom) + 1
        spec.comment("\nWriting Neuron Parameters for {} Neurons:\n".format(
            n_atoms))

        # Set the focus to the memory region 2 (neuron parameters):
        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value)

        # Write whether the key is to be used, and then the key, or 0 if it
        # isn't to be used
        if key is None:
            spec.write_value(data=0)
            spec.write_value(data=0)
        else:
            spec.write_value(data=1)
            spec.write_value(data=key)

        # Write the number of neurons in the block:
        spec.write_value(data=n_atoms)

        # Write the global parameters
        global_params = self._neuron_model.get_global_parameters()
        for param in global_params:
            spec.write_value(data=param.get_value(),
                             data_type=param.get_dataspec_datatype())

        # Write the neuron parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._neuron_model.get_neural_parameters())

        # Write the input type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._input_type.get_input_type_parameters())

        # Write the additional input parameters
        if self._additional_input is not None:
            utility_calls.write_parameters_per_neuron(
                spec, vertex_slice, self._additional_input.get_parameters())

        # Write the threshold type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice,
            self._threshold_type.get_threshold_parameters())
示例#7
0
    def _write_neuron_parameters(self, spec, key, vertex_slice,
                                 machine_time_step, time_scale_factor):
        # pylint: disable=too-many-arguments
        n_atoms = (vertex_slice.hi_atom - vertex_slice.lo_atom) + 1
        spec.comment(
            "\nWriting Neuron Parameters for {} Neurons:\n".format(n_atoms))

        # Set the focus to the memory region 2 (neuron parameters):
        spec.switch_write_focus(
            region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value)

        # Write the random back off value
        spec.write_value(
            random.randint(0, AbstractPopulationVertex._n_vertices))

        # Write the number of microseconds between sending spikes
        time_between_spikes = ((machine_time_step * time_scale_factor) /
                               (n_atoms * 2.0))
        spec.write_value(data=int(time_between_spikes))

        # Write whether the key is to be used, and then the key, or 0 if it
        # isn't to be used
        if key is None:
            spec.write_value(data=0)
            spec.write_value(data=0)
        else:
            spec.write_value(data=1)
            spec.write_value(data=key)

        # Write the number of neurons in the block:
        spec.write_value(data=n_atoms)

        # Write the size of the incoming spike buffer
        spec.write_value(data=self._incoming_spike_buffer_size)

        # Write the recording rates and sizes
        record_globals = self._neuron_recorder.get_global_parameters(
            vertex_slice)
        for param in record_globals:
            spec.write_value(data=param.get_value(),
                             data_type=param.get_dataspec_datatype())

        # Write the index parameters
        indexes = self._neuron_recorder.get_index_parameters(vertex_slice)
        utility_calls.write_parameters_per_neuron(spec,
                                                  vertex_slice,
                                                  indexes,
                                                  slice_paramaters=True)

        # Write the global parameters
        global_params = self._neuron_model.get_global_parameters()
        for param in global_params:
            spec.write_value(data=param.get_value(),
                             data_type=param.get_dataspec_datatype())

        # Write the neuron parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._neuron_model.get_neural_parameters())

        # Write the input type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice, self._input_type.get_input_type_parameters())

        # Write the additional input parameters
        if self._additional_input is not None:
            utility_calls.write_parameters_per_neuron(
                spec, vertex_slice, self._additional_input.get_parameters())

        # Write the threshold type parameters
        utility_calls.write_parameters_per_neuron(
            spec, vertex_slice,
            self._threshold_type.get_threshold_parameters())