def do_run(): # this test ensures there is too much dtcm used up, thus crashes during # initisation p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0) input = p.Population(1024, p.SpikeSourcePoisson, {'rate': 10}, "input") relay_on = p.Population(1024, p.IF_curr_exp, {}, "input") t_rule_LGN = p.SpikePairRule(tau_plus=17, tau_minus=34) w_rule_LGN = p.AdditiveWeightDependence(w_min=0.0, w_max=0.3, A_plus=0.01, A_minus=0.0085) stdp_model_LGN = p.STDPMechanism(timing_dependence=t_rule_LGN, weight_dependence=w_rule_LGN) s_d_LGN = p.SynapseDynamics(slow=stdp_model_LGN) p.Projection(input, relay_on, p.OneToOneConnector(weights=1), synapse_dynamics=s_d_LGN, target='excitatory') p.run(1000) p.end()
# +-------------------------------------------------------------------+ # | Initial network setup | # +-------------------------------------------------------------------+ # Putting this populations on chip 0 1 makes it easier to copy the provenance # data somewhere else # target_pop.set_constraint(PlacerChipAndCoreConstraint(0, 1)) # Connections # Plastic Connections between pre_pop and post_pop stdp_model = sim.STDPMechanism( timing_dependence=sim.SpikePairRule(tau_plus=tau_plus, tau_minus=tau_minus), weight_dependence=sim.AdditiveWeightDependence( w_min=0, w_max=g_max, # A_plus=0.02, A_minus=0.02 A_plus=a_plus, A_minus=a_minus)) if args.case == CASE_CORR_AND_REW: structure_model_w_stdp = sim.StructuralMechanism( stdp_model=stdp_model, weight=g_max, s_max=s_max, grid=grid, f_rew=f_rew, lateral_inhibition=args.lateral_inhibition, random_partner=args.random_partner, p_elim_dep=p_elim_dep, p_elim_pot=p_elim_pot, sigma_form_forward=sigma_form_forward,
def run_multiple_stdp_mechs_on_same_neuron(self): p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0) nNeurons = 200 # number of neurons in each population cell_params_lif = { 'cm': 0.25, 'i_offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0, 'tau_syn_E': 5.0, 'tau_syn_I': 5.0, 'v_reset': -70.0, 'v_rest': -65.0, 'v_thresh': -50.0 } populations = list() projections = list() weight_to_spike = 2.0 delay = 1 connections = list() for i in range(0, nNeurons): singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, delay) connections.append(singleConnection) # Plastic Connection between pre_pop and post_pop stdp_model1 = p.STDPMechanism( timing_dependence=p.SpikePairRule(tau_plus=16.7, tau_minus=33.7), weight_dependence=p.AdditiveWeightDependence(w_min=0.0, w_max=1.0, A_plus=0.005, A_minus=0.005), ) # Plastic Connection between pre_pop and post_pop stdp_model2 = p.STDPMechanism( timing_dependence=p.SpikePairRule(tau_plus=16.7, tau_minus=33.7), weight_dependence=p.AdditiveWeightDependence(w_min=0.0, w_max=1.0, A_plus=0.005, A_minus=0.005), ) # Plastic Connection between pre_pop and post_pop stdp_model3 = p.STDPMechanism( timing_dependence=p.SpikePairRule(tau_plus=16.7, tau_minus=33.7), weight_dependence=p.MultiplicativeWeightDependence(w_min=0.0, w_max=1.0, A_plus=0.005, A_minus=0.005), ) injectionConnection = [(0, 0, weight_to_spike, 1)] spikeArray1 = {'spike_times': [[0]]} spikeArray2 = {'spike_times': [[25]]} spikeArray3 = {'spike_times': [[50]]} spikeArray4 = {'spike_times': [[75]]} spikeArray5 = {'spike_times': [[100]]} spikeArray6 = {'spike_times': [[125]]} spikeArray7 = {'spike_times': [[150]]} spikeArray8 = {'spike_times': [[175]]} populations.append( p.Population(nNeurons, p.IF_curr_exp, cell_params_lif, label='pop_1')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray1, label='inputSpikes_1')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray2, label='inputSpikes_2')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray3, label='inputSpikes_3')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray4, label='inputSpikes_4')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray5, label='inputSpikes_5')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray6, label='inputSpikes_6')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray7, label='inputSpikes_7')) populations.append( p.Population(1, p.SpikeSourceArray, spikeArray8, label='inputSpikes_8')) projections.append( p.Projection(populations[0], populations[0], p.FromListConnector(connections))) pop = p.Projection(populations[1], populations[0], p.FromListConnector(injectionConnection)) projections.append(pop) synapse_dynamics = p.SynapseDynamics(slow=stdp_model1) pop = p.Projection(populations[2], populations[0], p.FromListConnector(injectionConnection), synapse_dynamics=synapse_dynamics) projections.append(pop) # This is expected to raise a SynapticConfigurationException synapse_dynamics = p.SynapseDynamics(slow=stdp_model2) pop = p.Projection(populations[3], populations[0], p.FromListConnector(injectionConnection), synapse_dynamics=synapse_dynamics) projections.append(pop) synapse_dynamics = p.SynapseDynamics(slow=stdp_model3) pop = p.Projection(populations[4], populations[0], p.FromListConnector(injectionConnection), synapse_dynamics=synapse_dynamics) projections.append(pop)
def do_run(): # SpiNNaker setup p.setup(timestep=1.0, min_delay=1.0, max_delay=10.0) # +-------------------------------------------------------------------+ # | General Parameters | # +-------------------------------------------------------------------+ # Population parameters model = p.IF_curr_exp # model = sim.IF_cond_exp """ cell_params = {'i_offset' : .1, 'tau_refrac' : 3.0, 'v_rest' : -65.0, 'v_thresh' : -51.0, 'tau_syn_E' : 2.0, 'tau_syn_I': 5.0, 'v_reset' : -70.0} """ cell_params = { 'cm': 0.25, # nF 'i_offset': 0.0, 'tau_m': 10.0, 'tau_refrac': 2.0, 'tau_syn_E': 2.5, 'tau_syn_I': 2.5, 'v_reset': -70.0, 'v_rest': -65.0, 'v_thresh': -55.4 } # Other simulation parameters e_rate = 200 in_rate = 350 n_stim_test = 5 n_stim_pairing = 10 dur_stim = 20 pop_size = 40 ISI = 150. start_test_pre_pairing = 200. start_pairing = 1500. start_test_post_pairing = 700. simtime = start_pairing + start_test_post_pairing + \ ISI * (n_stim_pairing + n_stim_test) + 550. # let's make it 5000 # Initialisations of the different types of populations IAddPre = [] IAddPost = [] # +-------------------------------------------------------------------+ # | Creation of neuron populations | # +-------------------------------------------------------------------+ # Neuron populations pre_pop = p.Population(pop_size, model, cell_params) post_pop = p.Population(pop_size, model, cell_params) # Test of the effect of activity of the pre_pop population on the post_pop # population prior to the "pairing" protocol : only pre_pop is stimulated for i in range(n_stim_test): IAddPre.append( p.Population( pop_size, p.SpikeSourcePoisson, { 'rate': in_rate, 'start': start_test_pre_pairing + ISI * (i), 'duration': dur_stim })) # Pairing protocol : pre_pop and post_pop are stimulated with a 10 ms # difference for i in range(n_stim_pairing): IAddPre.append( p.Population( pop_size, p.SpikeSourcePoisson, { 'rate': in_rate, 'start': start_pairing + ISI * (i), 'duration': dur_stim })) IAddPost.append( p.Population( pop_size, p.SpikeSourcePoisson, { 'rate': in_rate, 'start': start_pairing + ISI * (i) + 10., 'duration': dur_stim })) # Test post pairing : only pre_pop is stimulated # (and should trigger activity in Post) for i in range(n_stim_test): start = start_pairing + ISI * n_stim_pairing + \ start_test_post_pairing + ISI * i IAddPre.append( p.Population(pop_size, p.SpikeSourcePoisson, { 'rate': in_rate, 'start': start, 'duration': dur_stim })) # Noise inputs INoisePre = p.Population(pop_size, p.SpikeSourcePoisson, { 'rate': e_rate, 'start': 0, 'duration': simtime }, label="expoisson") params = {'rate': e_rate, 'start': 0, 'duration': simtime} INoisePost = p.Population(pop_size, p.SpikeSourcePoisson, params, label="expoisson") # +-------------------------------------------------------------------+ # | Creation of connections | # +-------------------------------------------------------------------+ # Connection parameters JEE = 3. # Connection type between noise poisson generator and # excitatory populations ee_connector = p.OneToOneConnector(weights=JEE * 0.05) # Noise projections p.Projection(INoisePre, pre_pop, ee_connector, target='excitatory') p.Projection(INoisePost, post_pop, ee_connector, target='excitatory') # Additional Inputs projections for i in range(len(IAddPre)): p.Projection(IAddPre[i], pre_pop, ee_connector, target='excitatory') for i in range(len(IAddPost)): p.Projection(IAddPost[i], post_pop, ee_connector, target='excitatory') # Plastic Connections between pre_pop and post_pop timing_dependence = p.SpikePairRule(tau_plus=20., tau_minus=50.0) weight_dependence = p.AdditiveWeightDependence(w_min=0, w_max=0.9, A_plus=0.02, A_minus=0.02) stdp_model = p.STDPMechanism(timing_dependence=timing_dependence, weight_dependence=weight_dependence) plastic_projection = \ p.Projection(pre_pop, post_pop, p.FixedProbabilityConnector(p_connect=0.5), synapse_dynamics=p.SynapseDynamics(slow=stdp_model) ) # +-------------------------------------------------------------------+ # | Simulation and results | # +-------------------------------------------------------------------+ # Record neurons' potentials pre_pop.record_v() post_pop.record_v() # Record spikes pre_pop.record() post_pop.record() # Run simulation p.run(simtime) weights = plastic_projection.getWeights() pre_spikes = pre_pop.getSpikes(compatible_output=True) post_spikes = post_pop.getSpikes(compatible_output=True) p.end() return (weights, pre_spikes, post_spikes)
#dummy_stim = sim.Population(1,sim.SpikeSourceArray,{'spike_times': [sim_time]},label="dummy") nn_pc = 10 # number of purkinje cells (and inferior olive cells) teaching_stim = sim.Population(nn_pc, sim.SpikeSourceArray, {'spike_times': [[teaching_time+j*ts for j in range(i)] for i in range(nn_pc)]},label="Inferior Olives") # Neuron populations population = sim.Population(nn_pc, model, cell_params, label="Purkinjes") population.record("spikes") population2 = sim.Population(nn_pc, sim.IF_curr_exp, cell_params, label="fake purk") population2.record("spikes") # Plastic Connection between pre_pop and post_pop stdp_model = sim.STDPMechanism( timing_dependence = TimingDependenceCerebellum(tau=tau, peak_time=peak_time), weight_dependence = sim.AdditiveWeightDependence(w_min=1.0, w_max=15.0, A_plus=0.5, A_minus=0.01) ) #stdp_model = sim.STDPMechanism( # timing_dependence = sim.SpikePairRule(tau_plus=tau, tau_minus=tau), # weight_dependence = sim.AdditiveWeightDependence(w_min=1.0, w_max=15.0, A_plus=0.1, A_minus=0.1) #) # Connections between spike sources and neuron populations ####### SET HERE THE PARALLEL FIBER-PURKINJE CELL LEARNING RULE ee_connector = sim.AllToAllConnector(weights=1.0) projection_pf = sim.Projection(pre_stim, population, ee_connector, synapse_dynamics=sim.SynapseDynamics(slow=stdp_model), target='excitatory')
def do_run(): # SpiNNaker setup sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0) # +-------------------------------------------------------------------+ # | General Parameters | # +-------------------------------------------------------------------+ # Population parameters model = sim.IF_curr_exp cell_params = {'cm': 0.25, 'i_offset': 0.0, 'tau_m': 10.0, 'tau_refrac': 2.0, 'tau_syn_E': 2.5, 'tau_syn_I': 2.5, 'v_reset': -70.0, 'v_rest': -65.0, 'v_thresh': -55.4} delta_t = 10 time_between_pairs = 150 num_pre_pairs = 10 num_pairs = 100 num_post_pairs = 10 pop_size = 1 pairing_start_time = (num_pre_pairs * time_between_pairs) + delta_t pairing_end_time = pairing_start_time + (num_pairs * time_between_pairs) sim_time = pairing_end_time + (num_post_pairs * time_between_pairs) # +-------------------------------------------------------------------+ # | Creation of neuron populations | # +-------------------------------------------------------------------+ # Neuron populations pre_pop = sim.Population(pop_size, model, cell_params) post_pop = sim.Population(pop_size, model, cell_params) # Stimulating populations pre_stim = sim.Population(pop_size, sim.SpikeSourceArray, {'spike_times': [[i for i in range(0, sim_time, time_between_pairs)], ]}) post_stim = sim.Population(pop_size, sim.SpikeSourceArray, {'spike_times': [[i for i in range(pairing_start_time, pairing_end_time, time_between_pairs)], ]}) # +-------------------------------------------------------------------+ # | Creation of connections | # +-------------------------------------------------------------------+ # Connection type between noise poisson generator and # excitatory populations ee_connector = sim.OneToOneConnector(weights=2) sim.Projection(pre_stim, pre_pop, ee_connector, target='excitatory') sim.Projection(post_stim, post_pop, ee_connector, target='excitatory') # Plastic Connections between pre_pop and post_pop stdp_model = sim.STDPMechanism( timing_dependence=sim.SpikePairRule(tau_plus=20.0, tau_minus=50.0), weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=1, A_plus=0.02, A_minus=0.02)) sim.Projection(pre_pop, post_pop, sim.OneToOneConnector(), synapse_dynamics=sim.SynapseDynamics(slow=stdp_model)) # Record spikes pre_pop.record() post_pop.record() # Run simulation sim.run(sim_time) pre_spikes = pre_pop.getSpikes(compatible_output=True) post_spikes = post_pop.getSpikes(compatible_output=True) # End simulation on SpiNNaker sim.end() return (pre_spikes, post_spikes)
def run_sim(num_pre, num_post, spike_times, run_time, weight=5.6, delay=40., gom=False, conn_type='one2one', use_stdp=False, mad=False, prob=0.5): model = p.IF_curr_exp p.setup( timestep = 1.0, min_delay = 1.0, max_delay = 144.0 ) # if num_pre <= 10: # p.set_number_of_neurons_per_core(model, 4) # p.set_number_of_neurons_per_core(p.SpikeSourceArray, 5) # elif 10 < num_pre <= 50: # p.set_number_of_neurons_per_core(model, 20) # p.set_number_of_neurons_per_core(p.SpikeSourceArray, 21) # elif 50 < num_pre <= 100: # p.set_number_of_neurons_per_core(model, 50) # p.set_number_of_neurons_per_core(p.SpikeSourceArray, 51) # else: if use_stdp: p.set_number_of_neurons_per_core(model, 150) p.set_number_of_neurons_per_core(p.SpikeSourceArray, 2000) cell_params_lif = { 'cm' : 1.0, # nF 'i_offset' : 0.00, 'tau_m' : 10.0, 'tau_refrac': 4.0, 'tau_syn_E' : 1.0, 'tau_syn_I' : 1.0, 'v_reset' : -70.0, 'v_rest' : -65.0, 'v_thresh' : -60.0 } cell_params_pos = { 'spike_times': spike_times, } w2s = weight dly = delay rng = NumpyRNG( seed = 1 ) if use_stdp: td = p.SpikePairRule(tau_minus=1., tau_plus=1.) wd = p.AdditiveWeightDependence(w_min=0, w_max=20., A_plus=0.0, A_minus=0.0) stdp = p.STDPMechanism(timing_dependence=td, weight_dependence=wd) syn_dyn = p.SynapseDynamics(slow=stdp) else: syn_dyn = None sink = p.Population( num_post, model, cell_params_lif, label='sink') # sink1 = p.Population( nNeuronsPost, model, cell_params_lif, label='sink1') source0 = p.Population( num_pre, p.SpikeSourceArray, cell_params_pos, label='source_0') # source1 = p.Population( nNeurons, p.SpikeSourceArray, cell_params_pos, # label='source_1') if conn_type == 'one2one': conn = p.OneToOneConnector(weights=w2s, delays=dly, generate_on_machine=gom) elif conn_type == 'all2all': conn = p.AllToAllConnector(weights=w2s, delays=dly, generate_on_machine=gom) elif conn_type == 'fixed_prob': conn = p.FixedProbabilityConnector(prob, weights=w2s, delays=dly, generate_on_machine=gom) else: raise Exception("Not a valid connector for test") proj = p.Projection( source0, sink, conn, target='excitatory', synapse_dynamics=syn_dyn, label=' source 0 to sink - EXC - delayed') # sink.record_v() # sink.record_gsyn() sink.record() print("Running for {} ms".format(run_time)) t0 = time.time() p.run(run_time) time_to_run = time.time() - t0 v = None gsyn = None spikes = None # v = np.array(sink.get_v(compatible_output=True)) # gsyn = sink.get_gsyn(compatible_output=True) spikes = sink.getSpikes(compatible_output=True) w = proj.getWeights(format='array') p.end() return v, gsyn, spikes, w, time_to_run
for inpop, outpop in zip(PuC_layer_pop, DCN_layer_pop): sim.Projection(inpop, outpop, sim.FromListConnector(connlist_PuC_DCN), target="inhibitory", label="proj_" + inpop.label + "_" + outpop.label) pass ## Plastic synapses (GrC to PuC) tau = 60. #450. # 60. peak_time = 100. #100. # Create cerebellar learning rule stdp_model = sim.STDPMechanism( timing_dependence=TimingDependenceCerebellum(tau=tau, peak_time=peak_time), weight_dependence=sim.AdditiveWeightDependence(w_min=0.0, w_max=W_MAX, A_plus=0.01, A_minus=0.01)) #weight_dependence = sim.AdditiveWeightDependence(w_min=0.0, w_max=W_MAX, A_plus=0.0015, A_minus=0.0020) weigth_first = [] proj_GrC_PuC = [] for outpop in PuC_layer_pop: proj_GrC_PuC.append( sim.Projection( GrC_layer_pop[0], outpop, sim.FixedProbabilityConnector(1.0, weights=weight_dist_GrC_PuC), synapse_dynamics=sim.SynapseDynamics(slow=stdp_model), target="excitatory", label="proj_" + GrC_layer_pop[0].label + "_" + outpop.label)) weigth_first.append(proj_GrC_PuC[-1].getWeights())