示例#1
0
def run_simple_split():
    sim.setup(0.1, time_scale_factor=1)
    sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 16)
    # Note, this next one is ignored on one-to-one Poisson sources
    sim.set_number_of_neurons_per_core(sim.SpikeSourcePoisson, 10)

    one_to_one_source = sim.Population(50,
                                       sim.SpikeSourcePoisson(rate=10000),
                                       additional_parameters={
                                           "seed": 0,
                                           "splitter":
                                           SplitterPoissonDelegate()
                                       })
    rand_source = sim.Population(50,
                                 sim.SpikeSourcePoisson(rate=10),
                                 additional_parameters={
                                     "seed": 1,
                                     "splitter": SplitterSliceLegacy()
                                 })
    rand_source.record("spikes")
    target = sim.Population(
        50,
        sim.IF_curr_exp(),
        additional_parameters={
            "splitter": SplitterAbstractPopulationVertexNeuronsSynapses(3)
        })
    target.record(["spikes", "packets-per-timestep"])
    sim.Projection(one_to_one_source, target, sim.OneToOneConnector(),
                   sim.StaticSynapse(weight=0.01))
    sim.Projection(rand_source, target, sim.OneToOneConnector(),
                   sim.StaticSynapse(weight=2.0))

    sim.run(1000)

    source_spikes = [
        s.magnitude
        for s in rand_source.get_data("spikes").segments[0].spiketrains
    ]
    target_spikes = [
        s.magnitude for s in target.get_data("spikes").segments[0].spiketrains
    ]
    target_ppts = (numpy.nonzero(
        numpy.sum([
            s.magnitude for s in target.get_data("packets-per-timestep").
            segments[0].filter(name='packets-per-timestep')[0]
        ],
                  axis=1))[0] - 1) / 10

    sim.end()

    # The only actual spikes received should be from the random source
    all_source_spikes = numpy.unique(
        numpy.sort(numpy.concatenate(source_spikes)))
    assert (numpy.allclose(all_source_spikes, target_ppts))

    # A target spike should be caused by a source spike (though not all sources
    # will cause a target spike)
    for s, t in zip(source_spikes, target_spikes):
        assert (len(t) <= len(s))
示例#2
0
def run_script():
    n_neurons = 500
    simtime = SIMTIME

    sim.setup(timestep=1)

    pop_1 = sim.Population(n_neurons, sim.IF_curr_exp(), label="pop_1")
    input1 = sim.Population(1, sim.SpikeSourceArray(spike_times=[0]),
                            label="input")
    sim.Projection(input1, pop_1, sim.AllToAllConnector(),
                   synapse_type=sim.StaticSynapse(weight=5, delay=1))
    input2 = sim.Population(n_neurons, sim.SpikeSourcePoisson(
        rate=100.0, seed=1),  label="Stim_Exc")
    sim.Projection(input2, pop_1, sim.OneToOneConnector(),
                   synapse_type=sim.StaticSynapse(weight=5, delay=1))
    pop_1.record(['spikes', 'v', 'gsyn_exc', 'gsyn_inh'])
    sim.run(simtime)

    neo = pop_1.get_data()
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    exc = neo.segments[0].filter(name='gsyn_exc')[0]
    inh = neo.segments[0].filter(name='gsyn_inh')[0]
    sim.end()

    return spikes, v,  exc, inh
示例#3
0
def do_run(seed=None):
    sim.setup(timestep=1.0, min_delay=1.0, max_delay=1.0)

    simtime = 1000

    if seed is None:
        pg_pop1 = sim.Population(2,
                                 sim.SpikeSourcePoisson(rate=10.0,
                                                        start=0,
                                                        duration=simtime),
                                 label="pg_pop1")
        pg_pop2 = sim.Population(2,
                                 sim.SpikeSourcePoisson(rate=10.0,
                                                        start=0,
                                                        duration=simtime),
                                 label="pg_pop2")
    else:
        pg_pop1 = sim.Population(2,
                                 sim.SpikeSourcePoisson(rate=10.0,
                                                        start=0,
                                                        duration=simtime,
                                                        seed=seed),
                                 label="pg_pop1")
        pg_pop2 = sim.Population(2,
                                 sim.SpikeSourcePoisson(rate=10.0,
                                                        start=0,
                                                        duration=simtime,
                                                        seed=seed + 1),
                                 label="pg_pop2")

    pg_pop1.record("spikes")
    pg_pop2.record("spikes")

    sim.run(simtime)

    neo = pg_pop1.get_data("spikes")
    spikes1 = neo_convertor.convert_spikes(neo)
    neo = pg_pop2.get_data("spikes")
    spikes2 = neo_convertor.convert_spikes(neo)

    sim.end()

    return (spikes1, spikes2)
示例#4
0
 def test_set_spikes_indexes(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(5, sim.IF_curr_exp())
     recorder = if_curr._vertex._neuron_recorder
     ssa = sim.Population(
         5, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(5, sim.SpikeSourcePoisson(rate=100.0, seed=1))
     if_curr.record("spikes", indexes=[1, 2, 4])
     ssa.record("spikes", indexes=[1, 2, 4])
     ssp.record("spikes", indexes=[1, 2, 4])
     self.assertListEq(["spikes"], if_curr._get_all_recording_variables())
     assert recorder._indexes["spikes"] == [1, 2, 4]
示例#5
0
 def test_set_spikes(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(1, sim.IF_curr_exp())
     self.assertListEq([], if_curr._get_all_recording_variables())
     ssa = sim.Population(
         1, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(2, sim.SpikeSourcePoisson(rate=100.0, seed=1))
     if_curr.record("spikes")
     self.assertListEq(["spikes"], if_curr._get_all_recording_variables())
     ssa.record("spikes")
     ssp.record("spikes")
     sim.end()
    def no_reset(self):
        p.setup(1.0)

        inp = p.Population(100, p.SpikeSourcePoisson(rate=100), label="input")
        inp.record("spikes")
        p.run(100)
        spikes1 = inp.spinnaker_get_data('spikes')
        inp.set(rate=10)
        p.run(100)
        spikes2 = inp.spinnaker_get_data('spikes')
        assert len(spikes1) > (len(spikes2) - len(spikes1)) * 5
        p.end()
示例#7
0
 def test_set_spikes_interval(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(1, sim.IF_curr_exp())
     recorder = if_curr._vertex._neuron_recorder
     self.assertListEq([], if_curr._get_all_recording_variables())
     ssa = sim.Population(
         1, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(2, sim.SpikeSourcePoisson(rate=100.0, seed=1))
     if_curr.record("spikes", sampling_interval=2)
     ssa.record("spikes", sampling_interval=2)
     ssp.record("spikes", sampling_interval=2)
     self.assertListEq(["spikes"], if_curr._get_all_recording_variables())
     assert recorder.get_neuron_sampling_interval("spikes") == 2
def run_forever_not_recorded():
    sim.setup(1.0)
    stim = sim.Population(1, sim.SpikeSourcePoisson(rate=10.0))
    pop = sim.Population(255, sim.IF_curr_exp(tau_syn_E=1.0), label="pop")
    sim.Projection(
        stim, pop, sim.AllToAllConnector(), sim.StaticSynapse(weight=20.0))
    conn = DatabaseConnection(
        start_resume_callback_function=start_callback,
        stop_pause_callback_function=stop_callback, local_port=None)
    SpynnakerExternalDevicePluginManager.add_database_socket_address(
        conn.local_ip_address, conn.local_port, None)
    sim.external_devices.run_forever()
    sim.end()
示例#9
0
 def test_set_spikes_indexes(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(5, sim.IF_curr_exp())
     recorder = if_curr._vertex.neuron_recorder
     ssa = sim.Population(5, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(5,
                          sim.SpikeSourcePoisson(rate=100.0),
                          additional_parameters={"seed": 1})
     if_curr[1, 2, 4].record("spikes")
     ssa[1, 2, 4].record("spikes")
     ssp[1, 2, 4].record("spikes")
     self.assertCountEqual(["spikes"],
                           if_curr._recorder.get_all_recording_variables())
     assert recorder._indexes["spikes"] == [1, 2, 4]
示例#10
0
def variable_rate_reset():
    """ Test the ways of changing rates and ensure that they don't change the\
        results
    """
    p.setup(1.0)
    pop = p.Population(100,
                       p.extra_models.SpikeSourcePoissonVariable(
                           rates=[1, 10, 100], starts=[0, 1000, 2000]),
                       additional_parameters={"seed": 0})
    pop_2 = p.Population(100,
                         p.SpikeSourcePoisson(rate=1),
                         additional_parameters={
                             "seed": 0,
                             "max_rate": 100
                         })
    pop.record("spikes")
    pop_2.record("spikes")

    p.run(1000)
    spikes_pop_2_1 = pop_2.get_data("spikes")
    nump = [s.magnitude for s in spikes_pop_2_1.segments[0].spiketrains]
    numpy.savetxt("spikesp2_1.txt", nump[0])
    pop_2.set(rate=10)
    p.run(1000)
    spikes_pop_2_2 = pop_2.get_data("spikes")
    nump = [s.magnitude for s in spikes_pop_2_2.segments[0].spiketrains]
    numpy.savetxt("spikesp2_2.txt", nump[0])
    pop_2.set(rate=100)
    p.run(1000)
    p.reset()
    p.run(3000)
    spikes_pop = pop.get_data("spikes")
    spikes_pop_2 = pop_2.get_data("spikes")
    p.end()

    spikes_1 = [s.magnitude for s in spikes_pop.segments[0].spiketrains]
    spikes_2 = [s.magnitude for s in spikes_pop.segments[1].spiketrains]
    spikes_p_2 = [s.magnitude for s in spikes_pop_2.segments[0].spiketrains]

    print(spikes_1)
    numpy.savetxt("spikes1.txt", spikes_1[0])
    print(spikes_2)
    numpy.savetxt("spikes2.txt", spikes_2[0])
    print(spikes_p_2)
    numpy.savetxt("spikesp2.txt", spikes_p_2[0])

    for s1, s2, s3 in zip(spikes_1, spikes_2, spikes_p_2):
        assert (numpy.array_equal(s1, s2))
        assert (numpy.array_equal(s2, s3))
示例#11
0
 def test_set_spikes(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(1, sim.IF_curr_exp())
     self.assertCountEqual([],
                           if_curr._recorder.get_all_recording_variables())
     ssa = sim.Population(1, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(2,
                          sim.SpikeSourcePoisson(rate=100.0),
                          additional_parameters={"seed": 1})
     if_curr.record("spikes")
     self.assertCountEqual(["spikes"],
                           if_curr._recorder.get_all_recording_variables())
     ssa.record("spikes")
     ssp.record("spikes")
     sim.end()
示例#12
0
 def test_set_all(self):
     sim.setup(timestep=1)
     if_curr = sim.Population(1, sim.IF_curr_exp())
     ssa = sim.Population(1, sim.SpikeSourceArray(spike_times=[0]))
     ssp = sim.Population(2,
                          sim.SpikeSourcePoisson(rate=100.0),
                          additional_parameters={"seed": 1})
     if_curr.record("all")
     self.assertListEq(["spikes", "v", "gsyn_inh", "gsyn_exc"],
                       if_curr._get_all_recording_variables())
     ssa.record("all")
     self.assertListEq(["spikes"], ssa._get_all_recording_variables())
     ssp.record("all")
     self.assertListEq(["spikes"], ssp._get_all_recording_variables())
     sim.end()
示例#13
0
 def check_rates(self, rates, seconds, seed):
     n_neurons = 100
     sim.setup(timestep=1.0)
     inputs = {}
     for rate in rates:
         input = sim.Population(n_neurons,
                                sim.SpikeSourcePoisson(rate),
                                label='inputSpikes_{}'.format(rate),
                                additional_parameters={"seed": seed})
         input.record("spikes")
         inputs[rate] = input
     sim.run(seconds * 1000)
     for rate in rates:
         self.check_spikes(n_neurons, inputs[rate], rate * seconds)
     sim.end()
def do_run(split, seed=None):
    p.setup(1.0)

    if split:
        p.set_number_of_neurons_per_core(p.SpikeSourcePoisson, 27)
        p.set_number_of_neurons_per_core(p.IF_curr_exp, 22)

    inp = p.Population(100,
                       p.SpikeSourcePoisson(rate=100, seed=seed),
                       label="input")
    pop = p.Population(100, p.IF_curr_exp, {}, label="pop")

    p.Projection(inp,
                 pop,
                 p.OneToOneConnector(),
                 synapse_type=p.StaticSynapse(weight=5))

    pop.record("spikes")
    inp.record("spikes")

    p.run(100)

    inp.set(rate=10)
    # pop.set("cm", 0.25)
    pop.set(tau_syn_E=1)

    p.run(100)

    pop_spikes1 = pop.spinnaker_get_data('spikes')
    inp_spikes1 = inp.spinnaker_get_data('spikes')

    p.reset()

    inp.set(rate=0)
    pop.set(i_offset=1.0)
    vs = p.RandomDistribution("uniform", [-65.0, -55.0],
                              rng=NumpyRNG(seed=seed))
    pop.initialize(v=vs)

    p.run(100)

    pop_spikes2 = pop.spinnaker_get_data('spikes')
    inp_spikes2 = inp.spinnaker_get_data('spikes')

    p.end()

    return (pop_spikes1, inp_spikes1, pop_spikes2, inp_spikes2)
示例#15
0
def do_run():
    p.setup(1.0)

    inp = p.Population(100,
                       p.SpikeSourcePoisson(rate=2, seed=417),
                       label="input")
    inp.record("spikes")

    p.run(100)

    p.reset()

    inp.set(rate=30)

    p.run(100)

    p.end()
示例#16
0
def test_levels(rates=(500, 1000), weights=(0.005, 0.0005)):
    counter = 0
    receive_pop = []
    spike_input = []
    p.setup(timestep=1, min_delay=1, max_delay=127)
    p.set_number_of_neurons_per_core(p.IF_cond_exp, 10)
    for rate in rates:
        for weight in weights:
            pop_size = 10
            receive_pop.append(p.Population(pop_size, p.IF_cond_exp(
            )))  #, label="receive_pop{}-{}".format(rate, weight)))

            receive_pop[counter].record(['spikes', 'v'])  #["spikes"])

            # Connect key spike injector to input population
            spike_input.append(
                p.Population(pop_size, p.SpikeSourcePoisson(rate=rate))
            )  #, label="input_connect{}-{}".format(rate, weight)))
            p.Projection(spike_input[counter], receive_pop[counter],
                         p.OneToOneConnector(), p.StaticSynapse(weight=weight))

            print "reached here 1"
            runtime = 11000

            counter += 1

    p.run(runtime)
    print "reached here 2"

    for i in range(counter):
        weight_index = i % len(weights)
        rate_index = (i - weight_index) / len(weights)
        print weight_index
        print rate_index
        # for j in range(receive_pop_size):
        spikes = receive_pop[i].get_data('spikes').segments[0].spiketrains
        v = receive_pop[i].get_data('v').segments[0].filter(name='v')[0]
        plt.figure("rate = {} - weight = {}".format(rates[rate_index],
                                                    weights[weight_index]))
        Figure(Panel(spikes, xlabel="Time (ms)", ylabel="nID", xticks=True),
               Panel(v, ylabel="Membrane potential (mV)", yticks=True))
        plt.show()

    # End simulation
    p.end()
def do_run():
    p.setup(1.0)

    inp = p.Population(100,
                       p.SpikeSourcePoisson(rate=2),
                       label="input",
                       additional_parameters={"seed": 417})
    inp.record("spikes")

    p.run(100)

    p.reset()

    inp.set(rate=30)

    p.run(100)

    p.end()
示例#18
0
def mission_impossible_2():
    sim.setup(0.1, time_scale_factor=1)

    # Can't do structural on multiple synapse cores
    source = sim.Population(1, sim.SpikeSourcePoisson(rate=10))
    pop = sim.Population(128,
                         sim.IF_curr_exp(),
                         additional_parameters={
                             "splitter":
                             SplitterAbstractPopulationVertexNeuronsSynapses(2)
                         })

    sim.Projection(
        source, pop, sim.FromListConnector([]),
        sim.StructuralMechanismStatic(sim.RandomSelection(),
                                      sim.DistanceDependentFormation(),
                                      sim.RandomByWeightElimination(0.5)))

    with pytest.raises(SynapticConfigurationException):
        sim.run(100)
示例#19
0
    def test_set_v(self):
        sim.setup(timestep=1)
        if_curr = sim.Population(1, sim.IF_curr_exp())
        ssa = sim.Population(1, sim.SpikeSourceArray(spike_times=[0]))
        ssp = sim.Population(2,
                             sim.SpikeSourcePoisson(rate=100.0),
                             additional_parameters={"seed": 1})
        if_curr.record("v")

        try:
            ssa.record("v")
        except Exception as e:
            self.assertEqual(
                "This population does not support the recording of v!", str(e))
        try:
            ssp.record("v")
        except Exception as e:
            self.assertEqual(
                "This population does not support the recording of v!", str(e))

        sim.end()
示例#20
0
    def test_set_v(self):
        sim.setup(timestep=1)
        if_curr = sim.Population(1, sim.IF_curr_exp())
        ssa = sim.Population(1, sim.SpikeSourceArray(spike_times=[0]))
        ssp = sim.Population(2,
                             sim.SpikeSourcePoisson(rate=100.0),
                             additional_parameters={"seed": 1})
        if_curr.record("v")

        # SpikeSourceArray must throw if asked to record voltage
        with self.assertRaises(Exception) as e:
            ssa.record("v")
        self.assertEqual(
            "This population does not support the recording of v!",
            str(e.exception))

        # SpikeSourcePoisson must throw if asked to record voltage
        with self.assertRaises(Exception) as e:
            ssp.record("v")
        self.assertEqual(
            "This population does not support the recording of v!",
            str(e.exception))

        sim.end()
示例#21
0
    def poisson_live_rates(self):

        self._saved_label_init = None
        self._saved_vertex_size = None
        self._saved_run_time_ms = None
        self._saved_machine_timestep_ms = None
        self._saved_label_set = None
        self._saved_label_stop = None

        def init(label, vertex_size, run_time_ms, machine_timestep_ms):
            self._saved_label_init = label
            self._saved_vertex_size = vertex_size
            self._saved_run_time_ms = run_time_ms
            self._saved_machine_timestep_ms = machine_timestep_ms

        def set_rates(label, conn):
            time.sleep(1.0)
            conn.set_rates(label, [(i, 50) for i in range(50)])
            self._saved_label_set = label

        def stop(label, _conn):
            self._saved_label_stop = label

        n_neurons = 100
        timestep = 1.0
        runtime = 2000
        sim.setup(timestep=timestep)
        sim.set_number_of_neurons_per_core(sim.SpikeSourcePoisson, 75)
        pop_label = "pop_to_control"
        pop = sim.Population(n_neurons,
                             sim.SpikeSourcePoisson(rate=0.0),
                             label=pop_label,
                             additional_parameters={"max_rate": 50.0})
        pop.record("spikes")
        conn = sim.external_devices.SpynnakerPoissonControlConnection(
            poisson_labels=[pop_label], local_port=None)
        conn.add_start_resume_callback(pop_label, set_rates)
        conn.add_init_callback(pop_label, init)
        conn.add_pause_stop_callback(pop_label, stop)
        with self.assertRaises(ConfigurationException):
            conn.add_receive_callback(pop_label, stop)
        sim.external_devices.add_database_socket_address(
            conn.local_ip_address, conn.local_port, None)
        sim.external_devices.add_poisson_live_rate_control(pop)
        sim.run(runtime)
        neo = pop.get_data("spikes")
        spikes = neo.segments[0].spiketrains
        sim.end()
        count_0_49 = 0
        for a_spikes in spikes[0:50]:
            count_0_49 += len(a_spikes)
        count_50_99 = 0
        for a_spikes in spikes[50:100]:
            count_50_99 += len(a_spikes)
        tolerance = math.sqrt(50.0)
        self.assertAlmostEqual(50.0, count_0_49 / 50.0, delta=tolerance)
        self.assertEqual(count_50_99, 0.0)
        self.assertEqual(self._saved_label_set, pop_label)
        self.assertEqual(self._saved_label_init, pop_label)
        self.assertEqual(self._saved_label_stop, pop_label)
        self.assertEqual(self._saved_machine_timestep_ms, timestep)
        self.assertEqual(self._saved_vertex_size, n_neurons)
        self.assertEqual(self._saved_run_time_ms, runtime)
示例#22
0
def do_run(seed=None):

    random.seed(seed)
    # SpiNNaker setup
    sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)

    # +-------------------------------------------------------------------+
    # | General Parameters                                                |
    # +-------------------------------------------------------------------+

    # Population parameters
    model = sim.IF_curr_exp

    cell_params = {
        'cm': 0.25,
        'i_offset': 0.0,
        'tau_m': 10.0,
        'tau_refrac': 2.0,
        'tau_syn_E': 2.5,
        'tau_syn_I': 2.5,
        'v_reset': -70.0,
        'v_rest': -65.0,
        'v_thresh': -55.4
    }

    # Other simulation parameters
    e_rate = 200
    in_rate = 350

    n_stim_test = 5
    n_stim_pairing = 10
    dur_stim = 20

    pop_size = 40

    ISI = 150.
    start_test_pre_pairing = 200.
    start_pairing = 1500.
    start_test_post_pairing = 700.

    simtime = start_pairing + start_test_post_pairing + \
        ISI*(n_stim_pairing + n_stim_test) + 550.  # let's make it 5000

    # Initialisations of the different types of populations
    IAddPre = []
    IAddPost = []

    # +-------------------------------------------------------------------+
    # | Creation of neuron populations                                    |
    # +-------------------------------------------------------------------+

    # Neuron populations
    pre_pop = sim.Population(pop_size, model(**cell_params))
    post_pop = sim.Population(pop_size, model(**cell_params))

    # Test of the effect of activity of the pre_pop population on the post_pop
    # population prior to the "pairing" protocol : only pre_pop is stimulated
    for i in range(n_stim_test):
        IAddPre.append(
            sim.Population(
                pop_size,
                sim.SpikeSourcePoisson(rate=in_rate,
                                       start=start_test_pre_pairing + ISI *
                                       (i),
                                       duration=dur_stim,
                                       seed=random.randint(0, 100000000))))

    # Pairing protocol : pre_pop and post_pop are stimulated with a 10 ms
    # difference
    for i in range(n_stim_pairing):
        IAddPre.append(
            sim.Population(
                pop_size,
                sim.SpikeSourcePoisson(rate=in_rate,
                                       start=start_pairing + ISI * (i),
                                       duration=dur_stim,
                                       seed=random.randint(0, 100000000))))
        IAddPost.append(
            sim.Population(
                pop_size,
                sim.SpikeSourcePoisson(rate=in_rate,
                                       start=start_pairing + ISI * (i) + 10.,
                                       duration=dur_stim,
                                       seed=random.randint(0, 100000000))))

    # Test post pairing : only pre_pop is stimulated
    # (and should trigger activity in Post)
    for i in range(n_stim_test):
        start = start_pairing + ISI * n_stim_pairing + \
                start_test_post_pairing + ISI * i
        IAddPre.append(
            sim.Population(
                pop_size,
                sim.SpikeSourcePoisson(rate=in_rate,
                                       start=start,
                                       duration=dur_stim,
                                       seed=random.randint(0, 100000000))))

    # Noise inputs
    INoisePre = sim.Population(pop_size,
                               sim.SpikeSourcePoisson(rate=e_rate,
                                                      start=0,
                                                      duration=simtime,
                                                      seed=random.randint(
                                                          0, 100000000)),
                               label="expoisson")
    INoisePost = sim.Population(pop_size,
                                sim.SpikeSourcePoisson(rate=e_rate,
                                                       start=0,
                                                       duration=simtime,
                                                       seed=random.randint(
                                                           0, 100000000)),
                                label="expoisson")

    # +-------------------------------------------------------------------+
    # | Creation of connections                                           |
    # +-------------------------------------------------------------------+

    # Connection parameters
    JEE = 3.

    # Connection type between noise poisson generator and
    # excitatory populations
    ee_connector = sim.OneToOneConnector()

    # Noise projections
    sim.Projection(INoisePre,
                   pre_pop,
                   ee_connector,
                   receptor_type='excitatory',
                   synapse_type=sim.StaticSynapse(weight=JEE * 0.05))
    sim.Projection(INoisePost,
                   post_pop,
                   ee_connector,
                   receptor_type='excitatory',
                   synapse_type=sim.StaticSynapse(weight=JEE * 0.05))

    # Additional Inputs projections
    for i in range(len(IAddPre)):
        sim.Projection(IAddPre[i],
                       pre_pop,
                       ee_connector,
                       receptor_type='excitatory',
                       synapse_type=sim.StaticSynapse(weight=JEE * 0.05))
    for i in range(len(IAddPost)):
        sim.Projection(IAddPost[i],
                       post_pop,
                       ee_connector,
                       receptor_type='excitatory',
                       synapse_type=sim.StaticSynapse(weight=JEE * 0.05))

    # Plastic Connections between pre_pop and post_pop
    stdp_model = sim.STDPMechanism(
        timing_dependence=sim.SpikePairRule(tau_plus=20.,
                                            tau_minus=50.0,
                                            A_plus=0.02,
                                            A_minus=0.02),
        weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=0.9))

    rng = NumpyRNG(seed=seed, parallel_safe=True)
    plastic_projection = \
        sim.Projection(pre_pop, post_pop, sim.FixedProbabilityConnector(
            p_connect=0.5, rng=rng), synapse_type=stdp_model)

    # +-------------------------------------------------------------------+
    # | Simulation and results                                            |
    # +-------------------------------------------------------------------+

    # Record spikes and neurons' potentials
    pre_pop.record(['v', 'spikes'])
    post_pop.record(['v', 'spikes'])

    # Run simulation
    sim.run(simtime)

    weights = plastic_projection.get('weight', 'list')

    pre_spikes = neo_convertor.convert_spikes(pre_pop.get_data('spikes'))
    post_spikes = neo_convertor.convert_spikes(post_pop.get_data('spikes'))

    # End simulation on SpiNNaker
    sim.end()

    return (pre_spikes, post_spikes, weights)
示例#23
0
    'tau_syn_E': tauSyn,
    'tau_syn_I': tauSyn,
    'i_offset': 0.9
}

# Set-up pynn Populations
E_pop = pynn.Population(N_E,
                        pynn.IF_curr_exp(**exc_cell_params),
                        label="E_pop")

I_pop = pynn.Population(N_I,
                        pynn.IF_curr_exp(**inh_cell_params),
                        label="I_pop")

Poiss_ext_E = pynn.Population(N_E,
                              pynn.SpikeSourcePoisson(rate=10.0),
                              label="Poisson_pop_E")
Poiss_ext_I = pynn.Population(N_I,
                              pynn.SpikeSourcePoisson(rate=10.0),
                              label="Poisson_pop_I")

# Connectors
E_conn = pynn.FixedProbabilityConnector(epsilon)
I_conn = pynn.FixedProbabilityConnector(epsilon)

# Use random delays for the external noise and
# set the inital membrance voltage below the resting potential
# to avoid the overshoot of activity in the beginning of the simulation
rng = NumpyRNG(seed=1)
delay_distr = RandomDistribution('uniform', low=1.0, high=16.0, rng=rng)
Ext_conn = pynn.OneToOneConnector()
示例#24
0
def run_script(simtime,
               n_neurons,
               run_split=1,
               record_spikes=False,
               spike_rate=None,
               spike_rec_indexes=None,
               spike_get_indexes=None,
               record_v=False,
               v_rate=None,
               v_rec_indexes=None,
               v_get_indexes=None,
               record_exc=False,
               exc_rate=None,
               exc_rec_indexes=None,
               exc_get_indexes=None,
               record_inh=False,
               inh_rate=None,
               inh_rec_indexes=None,
               inh_get_indexes=None,
               file_prefix=""):

    sim.setup(timestep=1)

    pop_1 = sim.Population(n_neurons, sim.IF_curr_exp(), label="pop_1")
    input1 = sim.Population(1,
                            sim.SpikeSourceArray(spike_times=[0]),
                            label="input")
    sim.Projection(input1,
                   pop_1,
                   sim.AllToAllConnector(),
                   synapse_type=sim.StaticSynapse(weight=5, delay=1))
    input2 = sim.Population(n_neurons,
                            sim.SpikeSourcePoisson(rate=100.0),
                            label="Stim_Exc",
                            additional_parameters={"seed": 1})
    sim.Projection(input2,
                   pop_1,
                   sim.OneToOneConnector(),
                   synapse_type=sim.StaticSynapse(weight=5, delay=1))
    if record_spikes:
        if spike_rec_indexes is None:
            pop_1.record(['spikes'], sampling_interval=spike_rate)
        else:
            view = PopulationView(pop_1, spike_rec_indexes)
            view.record(['spikes'], sampling_interval=spike_rate)
    if record_v:
        if v_rec_indexes is None:
            pop_1.record(['v'], sampling_interval=v_rate)
        else:
            view = PopulationView(pop_1, v_rec_indexes)
            view.record(['v'], sampling_interval=v_rate)
    if record_exc:
        if exc_rec_indexes is None:
            pop_1.record(['gsyn_exc'], sampling_interval=exc_rate)
        else:
            view = PopulationView(pop_1, exc_rec_indexes)
            view.record(['gsyn_exc'], sampling_interval=exc_rate)
    if record_inh:
        if inh_rec_indexes is None:
            pop_1.record(['gsyn_inh'], sampling_interval=inh_rate)
        else:
            view = PopulationView(pop_1, inh_rec_indexes)
            view.record(['gsyn_inh'], sampling_interval=inh_rate)
    for i in range(run_split):
        sim.run(simtime / run_split)

    if record_spikes:
        if spike_get_indexes is None:
            neo = pop_1.get_data("spikes")
        else:
            view = PopulationView(pop_1, spike_get_indexes)
            neo = view.get_data("spikes")
        spikes = neo.segments[0].spiketrains
        spike_file = os.path.join(current_file_path,
                                  file_prefix + "spikes.csv")
        write_spikes(spikes, spike_file)
    else:
        spikes = None

    if record_v:
        if v_get_indexes is None:
            neo = pop_1.get_data("v")
        else:
            view = PopulationView(pop_1, v_get_indexes)
            neo = view.get_data("v")
        v = neo.segments[0].filter(name='v')[0]
        v_file = os.path.join(current_file_path, file_prefix + "v.csv")
        numpy.savetxt(v_file, v, delimiter=',')
    else:
        v = None

    if record_exc:
        if exc_get_indexes is None:
            neo = pop_1.get_data('gsyn_exc')
        else:
            view = PopulationView(pop_1, exc_get_indexes)
            neo = view.get_data('gsyn_exc')
        exc = neo.segments[0].filter(name='gsyn_exc')[0]
        exc_file = os.path.join(current_file_path, file_prefix + "exc.csv")
        numpy.savetxt(exc_file, exc, delimiter=',')
    else:
        exc = None
    if record_inh:
        if inh_get_indexes is None:
            neo = pop_1.get_data('gsyn_inh')
        else:
            view = PopulationView(pop_1, inh_get_indexes)
            neo = view.get_data('gsyn_inh')
        inh = neo.segments[0].filter(name='gsyn_inh')[0]
        inh_file = os.path.join(current_file_path, file_prefix + "inh.csv")
        numpy.savetxt(inh_file, inh, delimiter=',')
    else:
        inh = None

    sim.end()

    return spikes, v, exc, inh
示例#25
0
             p.StaticSynapse(weight=0.09))
null_pop.record(['spikes', 'v', 'gsyn_exc'])
# null_pop.record(['spikes', 'v'])
# null_pops = []
# for i in range(4*number_of_bins):
#     null_pops.append(p.Population(1, p.IF_cond_exp(),
#                                   label='null {}'.format(i)))
#     null_pops[i].record(['spikes', 'v'])
#     p.Projection(pendulum, null_pops[i],
#                  p.FromListConnector([[i, 0, weight, 1]]))

arm_collection = []
# input_spikes = []
rate = 5
print('rate = ', rate)
input_spikes = p.Population(force_increments, p.SpikeSourcePoisson(rate=rate))
p.Projection(input_spikes, pendulum, p.AllToAllConnector(), p.StaticSynapse())
weight = 0.1
label = '64 0.55'
from_list_conn_left = [[0, 0, weight, 1], [6, 0, weight, 1],
                       [3, 0, weight, 1], [11, 0, weight, 1]]
from_list_conn_right = [[2, 0, weight, 1], [8, 0, weight, 1],
                        [5, 0, weight, 1], [9, 0, weight, 1]]
left = 0
right = 1
from_list_conn_out = [[0, left, weight, 1], [6, left, weight, 1],
                      [3, left, weight, 1], [11, left, weight, 1],
                      [2, right, weight, 1], [8, right, weight, 1],
                      [5, right, weight, 1], [9, right, weight, 1]]
output_pop = p.Population(
    outputs, p.IF_cond_exp(
def spinn_net():
    np.random.seed(272727)
    global output_labels
    global input_labels
    p.setup(timestep=1.0, min_delay=1, max_delay=60)
    p.set_number_of_neurons_per_core(p.IF_cond_exp, 64)
    n_pop_labels = []
    n_pop_list = []
    n_proj_list = []
    spike_source_list = []
    if offset != 0:
        for i in range(2):
            del output_labels[0]
        for i in range(2):
            del input_labels[0]
    for i in range(no_neuron_pops):
        #set up the input as a live spike source
        if i < 2:
            n_pop_labels.append("Input_pop{}".format(i))
            input_labels.append("Input_pop{}".format(i))
            n_pop_list.append(
                p.Population(pop_sizes[i], p.SpikeSourcePoisson(rate=poisson_rate),
                             label=n_pop_labels[i]))
            n_pop_list[i].record(["spikes"])
            p.external_devices.add_poisson_live_rate_control(
                n_pop_list[i], database_notify_port_num=(160+offset))
        #set up output pop
        elif i < 4:
            n_pop_labels.append("Output_pop{}".format(i))
            output_labels.append("Output_pop{}".format(i))
            n_pop_list.append(p.Population(pop_sizes[i], p.IF_cond_exp(),
                                           label=n_pop_labels[i]))
            p.external_devices.activate_live_output_for(
                n_pop_list[i], database_notify_port_num=(180+offset),
                port=(17000+offset))
            spike_source_list.append(p.Population(pop_sizes[i], p.SpikeSourcePoisson(rate=0.0),
                                                  label="source ".format(n_pop_labels[i])))
            n_pop_list[i].record(["spikes", "v"])
        #set up all other populations
        else:
            n_pop_labels.append("neuron{}".format(i))
            n_pop_list.append(p.Population(pop_sizes[i], p.IF_cond_exp(),
                                           label=n_pop_labels[i]))
            spike_source_list.append(p.Population(pop_sizes[i], p.SpikeSourcePoisson(rate=0.0),
                                                  label="source ".format(n_pop_labels[i])))
            n_pop_list[i].record(["spikes", "v"])



    poisson_control = p.external_devices.SpynnakerPoissonControlConnection(
        poisson_labels=input_labels, local_port=(160+offset))
    poisson_control.add_start_callback(n_pop_list[0].label, from_list_poisson)
    # poisson_control.add_start_callback(n_pop_list[1].label, poisson_setting)
    # poisson_control.add_start_callback(n_pop_list[0].label, poisson_threading)



    live_connection = p.external_devices.SpynnakerLiveSpikesConnection(
        receive_labels=output_labels, local_port=(180+offset))
    live_connection.add_receive_callback(n_pop_labels[2], receive_spikes)
    live_connection.add_receive_callback(n_pop_labels[3], receive_spikes)



    # weight_mu = 0.015
    # weight_sdtev = 0.05
    # delay_mu = 40
    # delay_sdtev = 5
    for i in range(no_neuron_pops):
        np.random.seed(272727)
        weights = RandomDistribution("normal_clipped", mu=weight_mu[i],
                                     sigma=weight_stdev[i], low=0, high=np.inf)
        delays = RandomDistribution("normal_clipped", mu=delay_mu[i],
                                    sigma=delay_stdev[i], low=1, high=55)
        synapse = p.StaticSynapse(weight=weights, delay=delays)
        for j in range(2, no_neuron_pops):
            print "\npop = {}({}) connecting to {}".format(i,pop_sizes[i],j)
            if connect_prob_ex[i][j-2] > 1e-10:
                print "ex = {}\tin = {}".format(connect_prob_ex[i][j-2], connect_prob_in[i][j-2])
                print "\tweight mu = {}\t stdev = {}".format(weight_mu[i], weight_stdev[i])
                print "\tdelay mu = {}\t stdev = {}".format(delay_mu[i], delay_stdev[i])
                n_proj_list.append(
                    p.Projection(n_pop_list[i], n_pop_list[j],
                                 p.FixedProbabilityConnector(connect_prob_ex[i][j-2]),#p.OneToOneConnector(),#
                                 synapse, receptor_type="excitatory"))
                n_proj_list.append(
                    p.Projection(n_pop_list[i], n_pop_list[j],
                                 p.FixedProbabilityConnector(connect_prob_in[i][j-2]),#p.OneToOneConnector(),#
                                 synapse, receptor_type="inhibitory"))
                # n_proj_list.append(p.Projection(n_pop_list[i], n_pop_list[j],
                #                                 p.FixedProbabilityConnector(1),
                #                                 synapse, receptor_type="inhibitory"))
    run = 0
    p.run(duration/timeScaleFactor)

    print "finished 1st"

    run = 1
    p.reset()

    p.run(duration/timeScaleFactor)
    total_v = list()
    spikes = list()
    v = list()
    spikes.append(n_pop_list[0].get_data("spikes"))
    spikes.append(n_pop_list[1].get_data("spikes"))
    for j in range(2,no_neuron_pops):
        spikes.append(n_pop_list[j].get_data("spikes"))
        v.append(n_pop_list[j].get_data("v"))
    Figure(
        # raster plot of the presynaptic neuron spike times
        Panel(spikes[0].segments[0].spiketrains,
              yticks=True, markersize=2, xlim=(0, duration)),
        Panel(spikes[1].segments[0].spiketrains,
              yticks=True, markersize=2, xlim=(0, duration)),
        Panel(spikes[2].segments[0].spiketrains,
              yticks=True, markersize=2, xlim=(0, duration)),
        Panel(spikes[3].segments[0].spiketrains,
              yticks=True, markersize=2, xlim=(0, duration)),
        # Panel(spikes[4].segments[0].spiketrains,
        #       yticks=True, markersize=2, xlim=(0, duration)),
        # Panel(spikes[no_neuron_pops-2].segments[0].spiketrains,
        #       yticks=True, markersize=2, xlim=(0, duration)),
        # Panel(spikes[no_neuron_pops-1].segments[0].spiketrains,
        #       yticks=True, markersize=2, xlim=(0, duration)),
        title="Raster plot",
        annotations="Simulated with {}".format(p.name())
    )
    plt.show()
    Figure(
        #membrane voltage plots
        Panel(v[0].segments[0].filter(name='v')[0],
              ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        Panel(v[1].segments[0].filter(name='v')[0],
              ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        Panel(v[2].segments[0].filter(name='v')[0],
              ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        Panel(v[3].segments[0].filter(name='v')[0],
              ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        # Panel(v[4].segments[0].filter(name='v')[0],
        #       ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        # Panel(v[no_neuron_pops-4].segments[0].filter(name='v')[0],
        #       ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        # Panel(v[no_neuron_pops-3].segments[0].filter(name='v')[0],
        #       ylabel="Membrane potential (mV)", yticks=True, xlim=(0, duration)),
        title="Membrane voltage plot",
    )
    plt.show()

    # p.reset()

    p.end()

    poisson_control.close()
    live_connection.close()

    print "finished run"
示例#27
0
# Create an excitatory population with 80% of the neurons and
# an inhibitory population with 20% of the neurons.
pop_exc = sim.Population(n_exc, sim.IF_curr_exp(), label="Excitatory")
pop_inh = sim.Population(n_inh, sim.IF_curr_exp(), label="Inhibitory")

# Create excitatory poisson stimulation population with 80%
#    of the neurons and
# an inhibitory poisson stimulation population with 20% of the neurons,
#  both with a rate of 1000Hz
# TODO RATE?
if rng is None:
    seed = None
else:
    seed = int(rng.next() * 1000)
stim_exc = sim.Population(n_exc,
                          sim.SpikeSourcePoisson(rate=1000.0, seed=seed),
                          label="Stim_Exc")

if rng is None:
    seed = None
else:
    seed = int(rng.next() * 1000)
stim_inh = sim.Population(n_inh,
                          sim.SpikeSourcePoisson(rate=1000.0,
                                                 seed=int(rng.next() * 1000)),
                          label="Stim_Inh")

# Create a one-to-one excitatory connection
# from the excitatory poisson stimulation population
# to the excitatory population with a weight of 0.1nA and a delay of 1.0ms
# TODO values
示例#28
0
import spynnaker8 as sim
import pyNN.utility.plotting as plot
import matplotlib.pyplot as plt
from pyNN.random import RandomDistribution

n_neurons = 1000
n_exc = int(round(n_neurons * 0.8))
n_inh = int(round(n_neurons * 0.2))
simtime = 1000

sim.setup(timestep=0.1)

pop_exc = sim.Population(n_exc, sim.IF_curr_exp(), label="Excitatory")
pop_inh = sim.Population(n_inh, sim.IF_curr_exp(), label="Inhibitory")
stim_exc = sim.Population(n_exc,
                          sim.SpikeSourcePoisson(rate=10.0),
                          label="Stim_Exc")
stim_inh = sim.Population(n_inh,
                          sim.SpikeSourcePoisson(rate=10.0),
                          label="Stim_Inh")

synapse_exc = sim.StaticSynapse(weight=0.2, delay=2.0)
synapse_inh = sim.StaticSynapse(weight=-1.0, delay=2.0)
sim.Projection(pop_exc,
               pop_exc,
               sim.FixedProbabilityConnector(0.1),
               synapse_type=synapse_exc,
               receptor_type="excitatory")
sim.Projection(pop_exc,
               pop_inh,
               sim.FixedProbabilityConnector(0.1),
# === Parameters ===============================================================

n_neurons = 3  # number of neurons in each population for the Spiking Neural Network in this example
timestamp = 1.0  # simulate the network with 1.0 ms time steps
sim_time = 100  # total simulation time

# === Configure the simulator ==================================================

sim.setup(timestamp)

# === Build the network ========================================================

# Presynaptic population - Input layer - Stimuli
pop_input = sim.Population(n_neurons,
                           sim.SpikeSourcePoisson(rate=100, duration=sim_time),
                           label='pop_input')
# Synapse value as weight = 5.0 nA, delay = 1 ms
static_synapse = sim.StaticSynapse(weight=5.0, delay=1)

# I - IF_cond_exp Population
pop_cond_exp = sim.Population(n_neurons,
                              sim.IF_cond_exp, {},
                              label='if_cond_exp')
sim.Projection(pop_input,
               pop_cond_exp,
               sim.OneToOneConnector(),
               synapse_type=static_synapse)

# II - IF_curr_exp Population
pop_curr_exp = sim.Population(n_neurons,
示例#30
0
def test_agent(arm1, arm2):

    arm = [arm1, arm2]

    print "arm = ", arm

    connections = read_agent()

    p.setup(timestep=1.0, min_delay=1, max_delay=127)
    p.set_number_of_neurons_per_core(p.IF_cond_exp, 100)
    bandit = p.Population(len(arm), Bandit(arm, exposure_time, reward_based=reward, label='bandit_pop'))
    [in2e, in2i, e_size, e2e, e2i, i_size, i2e, i2i, e2out, i2out] = connections
    if e_size > 0:
        excite = p.Population(e_size, p.IF_cond_exp(), label='excite_pop')
        excite_noise = p.Population(e_size, p.SpikeSourcePoisson(rate=noise_rate))
        p.Projection(excite_noise, excite, p.OneToOneConnector(),
                     p.StaticSynapse(weight=noise_weight), receptor_type='excitatory')
        excite.record('spikes')
    if i_size > 0:
        inhib = p.Population(i_size, p.IF_cond_exp(), label='inhib_pop')
        inhib_noise = p.Population(i_size, p.SpikeSourcePoisson(rate=noise_rate))
        p.Projection(inhib_noise, inhib, p.OneToOneConnector(),
                     p.StaticSynapse(weight=noise_weight), receptor_type='excitatory')
        inhib.record('spikes')
    if len(in2e) != 0:
        p.Projection(bandit, excite, p.FromListConnector(in2e),
                     receptor_type='excitatory')
        # p.Projection(starting_pistol, excite, p.FromListConnector(in2e),
        #              receptor_type='excitatory')
    if len(in2i) != 0:
        p.Projection(bandit, inhib, p.FromListConnector(in2i),
                     receptor_type='excitatory')
        # p.Projection(starting_pistol, inhib, p.FromListConnector(in2i),
        #              receptor_type='excitatory')
    if len(e2e) != 0:
        p.Projection(excite, excite, p.FromListConnector(e2e),
                     receptor_type='excitatory')
    if len(e2i) != 0:
        p.Projection(excite, inhib, p.FromListConnector(e2i),
                     receptor_type='excitatory')
    if len(i2e) != 0:
        p.Projection(inhib, excite, p.FromListConnector(i2e),
                     receptor_type='inhibitory')
    if len(i2i) != 0:
        p.Projection(inhib, inhib, p.FromListConnector(i2i),
                     receptor_type='inhibitory')
    if len(e2out) != 0:
        p.Projection(excite, bandit, p.FromListConnector(e2out),
                     receptor_type='excitatory')
    if len(i2out) != 0:
        p.Projection(inhib, bandit, p.FromListConnector(i2out),
                     receptor_type='inhibitory')

    simulator = get_simulator()
    p.run(runtime)

    scores = get_scores(game_pop=bandit, simulator=simulator)
    print scores
    print arm

    e_spikes = excite.get_data('spikes').segments[0].spiketrains
    i_spikes = inhib.get_data('spikes').segments[0].spiketrains
    # v = receive_pop[i].get_data('v').segments[0].filter(name='v')[0]
    plt.figure("[{}, {}] - {}".format(arm1, arm2, scores))
    Figure(
        Panel(e_spikes, xlabel="Time (ms)", ylabel="nID", xticks=True),
        Panel(i_spikes, xlabel="Time (ms)", ylabel="nID", xticks=True)
    )
    plt.show()

    p.end()