示例#1
0
if not args.cuda:
    args.gpu = -1
if torch.cuda.is_available() and args.cuda:
    print("Note: You are using GPU for training")
    torch.cuda.set_device(args.gpu)
    torch.cuda.manual_seed(args.seed)
if torch.cuda.is_available() and not args.cuda:
    print(
        "Warning: You have Cuda but not use it. You are using CPU for training."
    )

TEXT = data.Field(lower=True)
RELATION = data.Field(sequential=False)

train, dev, test = SQdataset.splits(TEXT, RELATION)
TEXT.build_vocab(train, dev, test)
RELATION.build_vocab(train, dev)

train_iter = data.Iterator(train,
                           batch_size=args.batch_size,
                           device=args.gpu,
                           train=True,
                           repeat=False,
                           sort=False,
                           shuffle=True)
dev_iter = data.Iterator(dev,
                         batch_size=args.batch_size,
                         device=args.gpu,
                         train=False,
                         repeat=False,
示例#2
0
if not args.cuda:
    args.gpu = -1
if torch.cuda.is_available() and args.cuda:
    print("Note: You are using GPU for training")
    torch.cuda.set_device(args.gpu)
    torch.cuda.manual_seed(args.seed)
if torch.cuda.is_available() and not args.cuda:
    print(
        "Warning: You have Cuda but not use it. You are using CPU for training."
    )

TEXT = data.Field(lower=True)
RELATION = data.Field(sequential=False)

train, dev, test = SQdataset.splits(TEXT, RELATION, args.data_dir)
TEXT.build_vocab(train, dev, test)
RELATION.build_vocab(train, dev)

train_iter = data.Iterator(train,
                           batch_size=args.batch_size,
                           device="cuda",
                           train=True,
                           repeat=False,
                           sort=False,
                           shuffle=True)
dev_iter = data.Iterator(dev,
                         batch_size=args.batch_size,
                         device="cuda",
                         train=False,
                         repeat=False,