def test_reproducibility(self, adata: AnnData, n_jobs: int): spatial_neighbors(adata) res1 = nhood_enrichment(adata, cluster_key=_CK, seed=42, n_jobs=n_jobs, n_perms=20, copy=True) res2 = nhood_enrichment(adata, cluster_key=_CK, seed=42, n_jobs=n_jobs, n_perms=20, copy=True) res3 = nhood_enrichment(adata, cluster_key=_CK, seed=43, n_jobs=n_jobs, n_perms=20, copy=True) assert len(res1) == len(res2) assert len(res2) == len(res3) for key in range(len(res1)): np.testing.assert_array_equal(res2[key], res1[key]) if key == 0: # z-score with pytest.raises(AssertionError): np.testing.assert_array_equal(res3[key], res2[key]) else: # counts np.testing.assert_array_equal(res3[key], res2[key])
def test_plot_nhood_enrichment_dendro(self, adata: AnnData): gr.spatial_neighbors(adata) gr.nhood_enrichment(adata, cluster_key=C_KEY) # use count to avoid nan for scipy.cluster.hierarchy pl.nhood_enrichment(adata, cluster_key=C_KEY, mode="count", method="single")
def test_parallel_works(self, adata: AnnData, backend: str): spatial_neighbors(adata) nhood_enrichment(adata, cluster_key=_CK, n_jobs=2, n_perms=20, backend=backend) self._assert_common(adata)
def test_plot_cbar_kwargs(self, adata: AnnData): gr.spatial_neighbors(adata) gr.nhood_enrichment(adata, cluster_key=C_KEY) pl.nhood_enrichment(adata, cluster_key=C_KEY, cbar_kwargs={ "label": "FOOBARBAZQUUX", "filled": False })
def test_nhood_enrichment(self, adata: AnnData): spatial_neighbors(adata) nhood_enrichment(adata, cluster_key=_CK) self._assert_common(adata)
def test_plot_cbar_vmin_vmax(self, adata: AnnData): gr.spatial_neighbors(adata) gr.nhood_enrichment(adata, cluster_key=C_KEY) pl.nhood_enrichment(adata, cluster_key=C_KEY, vmin=10, vmax=20)
def test_plot_nhood_enrichment(self, adata: AnnData): gr.spatial_neighbors(adata) gr.nhood_enrichment(adata, cluster_key=C_KEY) pl.nhood_enrichment(adata, cluster_key=C_KEY)