示例#1
0
    def init_repo(args={},debug=False,init=False):
        '''
        initilize a repo as coolkit repo with default configuration
        if any parent repo is already initilized then we will just copy the config from there
        '''
        cwd = abs_path(os.getcwd())
        home_loc = abs_path('~')
        root_loc = abs_path('/')
        now = cwd
        while(now != home_loc and now != root_loc):
            if('.coolkit' in os.listdir(now) and os.path.isdir(os.path.join(now,'.coolkit'))):
                if(debug): print('got .coolkit at ',now)
                break
            now = abs_path(os.path.join(now,os.pardir))
        if(now == root_loc):
            Colour.print('Coolkit should be run in path under home directory',Colour.RED)
            sys.exit(1)

        if(now == home_loc):
            SrbJson(cwd+'/.coolkit/config',srbjson.local_template)
            Colour.print('initialized empty CoolKit repository in '+cwd+'/.coolkit/',Colour.GREEN)
        elif(now != cwd):
            verify_folder(cwd+'/.coolkit/')
            shutil.copy(now+'/.coolkit/config',cwd+'/.coolkit/config')
            Colour.print('initialized empty CoolKit repository in '+cwd+'/.coolkit/',Colour.GREEN)
        else:
            if(init): Colour.print('Already a coolkit repo',Colour.YELLOW)

        if(not 'c_name' in args or not args['c_name']):
            contest_name = get_contest_name(cwd.split('/')[-1])
            if(not contest_name):
                args['c_name'] = None
            else:
                args['c_name'] = contest_name
        SrbJson.dump_data(args,cwd+'/.coolkit/config',srbjson.local_template)
示例#2
0
    def __init__(self,
                 code1,
                 code2,
                 tester_script,
                 maxlim=10000,
                 idd="0",
                 timeout="10"):
        self.idd = '_' + str(idd)

        if os_name == 'windows':
            self.timeout = ''
        else:
            self.timeout = 'timeout ' + str(timeout) + 's '

        code1 = abs_path(code1)
        code2 = abs_path(code2)
        tester_script = abs_path(tester_script)

        self.code1 = code1
        self.code2 = code2
        self.base1 = code1.split('/')[-1].split('\\')[-1].split('.')[0]
        self.base2 = code2.split('/')[-1].split('\\')[-1].split('.')[0]
        self.out1 = '.' + '-'.join(
            relative_path(code1).split('/')[1:]) + self.idd + '.tester'
        self.out2 = '.' + '-'.join(
            relative_path(code2).split('/')[1:]) + self.idd + '.tester'

        self.tester_script = tester_script
        self.maxlim = int(maxlim)
        if not Code_tester.check_exception(code1, code2, tester_script):
            sys.exit(0)

        self.exec1 = self.compile_code(self.code1)
        self.exec2 = self.compile_code(self.code2)
        self.exec3 = self.compile_code(self.tester_script)
示例#3
0
def install_tester():
    os_name = get_os_name()

    pwd = str(os.getcwd())  #always return without / at end;
    pwd = abs_path(pwd)
    binary_path = pwd + '/even_tester/binaries/' + os_name + '/even_validator'
    if (os_name == 'windows'): binary_path += '.exe'

    if (os_name == 'windows'):
        install_path = abs_path('~/programs', '\\')
        binary_path = abs_path(binary_path, '\\')

        user_path = os.environ['path'] + ';'
        if not install_path + ';' in user_path:
            print('adding to userpath')
            print(install_path)
            print(user_path)
            os.system('setx path "%path%;' + install_path + '"')
    else:
        install_path = abs_path('~/.local/bin')
    verify_folder(install_path)

    dependency_map = {
        'even_validator': {
            'ubuntu': 'cp ' + binary_path + ' ' + install_path,
            'windows': 'copy "' + binary_path + '" "' + install_path + '"',
        },
    }
    install_dependencies(dependency_map, verbose=True)
def get_true_bbox(img_path, base_xml_dir=abs_path(settings.imagenet_val_xml_path)):
    # parse the xml for bounding box coordinates
    temp_img = Image.open(img_path)
    sz = temp_img.size # width x height
    im_name = img_path.split('/')[-1].split('.')[0]
    tree = ET.parse(os.path.join(abs_path(base_xml_dir), f'{im_name}.xml'))

    root = tree.getroot()
    # Get Ground Truth ImageNet masks

    # temp_area = 0
    gt_mask = np.zeros((sz[1], sz[0]))  # because we want rox x col
    for iIdx, type_tag in enumerate(root.findall('object/bndbox')):
        xmin = int(type_tag[0].text)
        ymin = int(type_tag[1].text)
        xmax = int(type_tag[2].text)
        ymax = int(type_tag[3].text)
        # if (ymax - ymin)*(xmax - xmin) > temp_area:
            # temp_area = (ymax - ymin)*(xmax - xmin)
        gt_mask[ymin:ymax, xmin:xmax] = 1

    gt = preprocess_gt_bb(gt_mask, 224)
    gt = (gt >= 0.5).astype(float) #binarize after resize

    return gt
示例#5
0
    def fetch_data_from_local_config():
        Args._verify_init()
        cwd = abs_path(os.getcwd())
        home_loc = abs_path('~')
        root_loc = abs_path('/')
        now = cwd
        while(now != home_loc and now!= root_loc):
            if('.coolkit' in os.listdir(now) and os.path.isdir(os.path.join(now,'.coolkit'))):
                break
            now = abs_path(os.path.join(now,os.pardir))
        if(now == root_loc):
            Colour.print('Coolkit should be run in path under home directory',Colour.RED)
            sys.exit(1)

        return SrbJson(now+'/.coolkit/config',srbjson.local_template).data
示例#6
0
 def check_init():
     '''
     check if directory is initilized or not
     '''
     cwd = abs_path(os.getcwd())
     home_loc = abs_path('~')
     root_loc = abs_path('/')
     now = cwd
     while(now != home_loc and now != root_loc):
         if('.coolkit' in os.listdir(now) and os.path.isdir(os.path.join(now,'.coolkit'))):
             return now # path of .coolkit
         now = abs_path(os.path.join(now,os.pardir))
     if(now == root_loc):
         Colour.print('Coolkit should be run in path under home directory',Colour.RED)
         sys.exit(1)
     return False
示例#7
0
    def __init__(self,
                 data_path,
                 transform,
                 img_idxs=[0, 1],
                 idx_flag=1,
                 args=None):
        self.data_path = data_path
        self.transform = transform
        self.args = args

        if data_path == abs_path(settings.imagenet_val_path):
            aa = img_name_list[img_idxs[0]:img_idxs[1]]
            self.img_filenames = [
                os.path.join(data_path, f'{ii}.JPEG') for ii in aa
            ]
            # self.img_filenames.sort()
        else:
            self.img_filenames = []
            for file in glob.glob(os.path.join(data_path, "*.JPEG")):
                self.img_filenames.append(file)
            self.img_filenames.sort()

        if idx_flag == 1:
            print('Only prodicing results for 1 image')
            img_idxs = [0]
            self.img_filenames = [self.img_filenames[i] for i in img_idxs]
示例#8
0
 def get_init_path():
     '''
     set config to global config file.
     '''
     cwd = abs_path(os.getcwd())
     home_loc = abs_path('~')
     root_loc = abs_path('/')
     now = cwd
     while(now != home_loc and now != root_loc):
         if('.coolkit' in os.listdir(now) and os.path.isdir(os.path.join(now,'.coolkit'))):
             return now+'/.coolkit'
         now = abs_path(os.path.join(now,os.pardir))
     if(now == root_loc):
         Colour.print('Coolkit should be run in path under home directory',Colour.RED)
         sys.exit(1)
     return None
示例#9
0
    def get_image_class(self, filepath):
        base_dir = abs_path('~/CS231n/heatmap_tests/')

        # ipdb.set_trace()

        # ImageNet 2012 validation set images?
        with open(os.path.join(settings.imagenet_class_mappings, "ground_truth_val2012")) as f:
        # with open(os.path.join(base_dir, "imagenet_class_mappings", "ground_truth_val2012")) as f:
            ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
                                    for x in f.readlines() if len(x.strip()) > 0}

        with open(os.path.join(settings.imagenet_class_mappings, "synset_id_to_class")) as f:
        # with open(os.path.join(base_dir, "imagenet_class_mappings", "synset_id_to_class")) as f:
            synset_to_class = {x.split()[1]: int(x.split()[0])
                               for x in f.readlines() if len(x.strip()) > 0}

        def get_class(f):
            # ipdb.set_trace()
            # File from ImageNet 2012 validation set
            ret = ground_truth_val2012.get(f, None)
            if ret is None:
                # File from ImageNet training sets
                ret = synset_to_class.get(f.split("_")[0], None)
            if ret is None:
                # Random JPEG file
                ret = 1000
            return ret

        image_class = get_class(filepath.split('/')[-1])
        return image_class
示例#10
0
 def export(self, path):
     from srblib import abs_path
     path = abs_path(path)
     writer = PyPDF2.PdfFileWriter()
     for doc, pnum in self._outpages:
         writer.addPage(doc.get_page(pnum))
     with open(path, 'wb') as f:
         writer.write(f)
示例#11
0
 def _verified_file(file_path):
     if not file_path:
         return None
     file_path = abs_path(file_path)
     if not os.path.isfile(file_path):
         Colour.print('No such file : ' + Colour.END + file_path,
                      Colour.RED)
         sys.exit()
     return file_path
示例#12
0
class Const:
    cache_dir = abs_path('~/.config/coolkit')
    mult_soln_words = [
        'multiple possible', 'multiple answers', 'output any', 'any',
        'multiple'
    ]

    def __init__():
        pass
示例#13
0
def write_data(data,fout):
	dump_data(data,'result/json/'+fout+'.json')
	out = ""
	rank = 1
	for item in data:
		out+=str(rank)+" "+item.get_result()+"\n\n"
		rank+=1
	fout = abs_path('result/text/' + fout + '.txt')
	verify_file(fout)
	open(fout,'w').write(out)
示例#14
0
def data_to_excel(data, out_path):
    out_path = abs_path(out_path)
    book = xlwt.Workbook(encoding="utf-8")
    sheet = book.add_sheet("Sheet1")
    for i in range(len(data)):
        row = data[i]
        for j in range(len(row)):
            sheet.write(i, j, row[j])

    book.save(out_path)
示例#15
0
def os_cd(path):
    """
    A short-cut for _`cd` like_ commands

    **Throws**

    - `Throws/Raises` if path does not exist
    """
    abspath = srblib.abs_path(path)
    if os.path.isdir(abspath) is False:
        raise TypeError("No directory at {abspath}".format(abspath = abspath))

    os.chdir(abspath)
def main(args):

    ## Debugging Mode
    if sys.gettrace() is not None:
        print('In debug mode')
        args.profiler = 'simple'
        args.num_workers = 0
        args.pin_memory = False
        args.default_root_dir = mkdir_p(abs_path('./tmp_dir'))
        args.stochastic_weight_avg = True
        args.limit_train_batches = 0.001
        args.limit_val_batches = 0.001
        args.num_sanity_val_steps = 0
        args.terminate_on_nan = True
        args.deterministic = True
        args.auto_select_gpus = False
        args.fast_dev_run = False  # Quick Check Working
        args.progress_bar_refresh_rate = 0
        args.gpus = 1
        args.precision = 16
        args.train_batch_size = 32
        # args.val_batch_size=4
        args.freeze_encoder = True
        args.verbose = True
        args.max_epochs = 2

    ## Model
    dict_vars = vars(args)
    model = BertForRegression(**dict_vars)
    print(f'Model Init Done')

    ## TODO: Early Stopping Callback
    ## Callbacks
    checkpoint_callback = pl.callbacks.ModelCheckpoint(
        filename='{epoch:02d}-{val_loss:.5f}-{step_count}',
        dirpath=None,
        prefix="best_model_checkpoint",
        monitor="val_loss",
        mode="min",
        save_top_k=args.save_top_k,
    )
    # lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='step')

    trainer = pl.Trainer.from_argparse_args(
        args,
        callbacks=[LoggingCallback(), checkpoint_callback],
    )

    trainer.fit(model)
    best_model_path = trainer.checkpoint_callback.best_model_path
    print(f'\nBEST MODEL PATH IS {best_model_path}')
示例#17
0
    def set_local_config(args={},debug=False):
        '''
        set config to config file.
            parent config if found
            creates init if not
        '''
        if(not Args.check_init()):
            Args.init_repo()

        cwd = abs_path(os.getcwd())
        home_loc = abs_path('~')
        root_loc = abs_path('/')
        now = cwd
        while(now != home_loc and now != root_loc):
            if('.coolkit' in os.listdir(now) and os.path.isdir(os.path.join(now,'.coolkit'))):
                if(debug): print('got .coolkit at ',now)
                break
            now = abs_path(os.path.join(now,os.pardir))
        if(now == root_loc):
            Colour.print('Coolkit should be run in path under home directory',Colour.RED)
            sys.exit(1)

        SrbJson.dump_data(args,now+'/.coolkit/config',srbjson.local_template)
def mkdir_p(mypath):
    """Creates a directory. equivalent to using mkdir -p on the command line"""
    from errno import EEXIST
    from os import makedirs, path
    from srblib import abs_path
    mypath = abs_path(mypath)

    try:
        makedirs(mypath)
    except OSError as exc:  # Python >2.5
        if exc.errno == EEXIST and path.isdir(mypath):
            pass
        else:
            raise
    return mypath
示例#19
0
    def __init__(self, data_path, img_idxs=[0, 1], idx_flag=1):
        self.data_path = data_path
        if data_path == abs_path(settings.imagenet_val_path):
            aa = img_name_list[img_idxs[0]:img_idxs[1]]
            self.img_filenames = [
                os.path.join(data_path, f'{ii}.JPEG') for ii in aa
            ]
        else:
            self.img_filenames = []
            for file in glob.glob(os.path.join(data_path, "*.JPEG")):
                self.img_filenames.append(file)
            self.img_filenames.sort()
            self.img_filenames = self.img_filenames[:50]

        print(
            f'\nNo. of images to be analyzed are {len(self.img_filenames)}\n')
        if idx_flag == 1:
            print('Only prodicing results for 1 image')
            img_idxs = [0]
            self.img_filenames = [self.img_filenames[i] for i in img_idxs]
示例#20
0
def excel_to_data(inp_path):
    inp_path = abs_path(inp_path)
    raw_data = pandas.read_excel(inp_path)
    header = list(raw_data.columns)

    if (len(header) == 0):
        return []

    temp_data = []
    for head in header:
        col = list(raw_data[head])
        temp_data.append(col)

    data = [header]
    for i in range(len(temp_data[0])):
        row = []
        for j in range(len(header)):
            row.append(temp_data[j][i])
        data.append(row)

    return data
示例#21
0
def test_view():
    if not on_travis:
        return
    print()
    cwd = abs_path(os.getcwd())
    try:
        loc = cwd+'/test/contests/837'
        os.chdir(loc)
        remove(loc+'/.coolkit')
        assert(os.system('coolkit init')==0)
        assert(os.system('coolkit view user srbcheema1')==0)
        assert(os.system('coolkit view contest')==0)
        assert(os.system('coolkit view prob A')==0)
        assert(os.system('coolkit view upcoming')==0)
        if(utils.do_online_test()):
            assert(os.system('coolkit view friends')==0)
            assert(os.system('coolkit view standings 935')==0)
        os.chdir(cwd)
    except Exception as e:
        remove(loc+'/.coolkit')
        os.chdir(cwd)
        raise e
示例#22
0
import os
import shutil

from importlib.util import spec_from_file_location, module_from_spec

from srblib import abs_path, verify_file
from srblib import Module

from .Constants import Const

_path_of_default_global_config = '/'.join(
    abs_path(__file__).split('/')[:-2]) + '/extra/global_config.py'
_global_config = Module(Const.cache_dir + '/global_config.py',
                        _path_of_default_global_config)


def get_contest_name(folder):
    return _global_config.get_contest_name(folder)


def get_problem_name(file_name):
    return _global_config.get_problem_name(file_name)
示例#23
0
# from robustness import model_utils, datasets
from user_constants import DATA_PATH_DICT
import settings

import warnings
warnings.filterwarnings("ignore")

import utils as eutils

use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
Tensor = FloatTensor

# os.environ.set("MAX_LEN_IDENTIFIER", 300)
text_file = abs_path(settings.paper_img_txt_file)
# text_file = f'/home/naman/CS231n/heatmap_tests/' \
#             f'Madri/Madri_New/robustness_applications/img_name_files/' \
#             f'time_15669152608009198_seed_0_' \
#             f'common_correct_imgs_model_names_madry_ressnet50_googlenet.txt'
img_name_list = []
with open(text_file, 'r') as f:
    for line in f:
        img_name_list.append(line.split('\n')[0])

## For reproducebility
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

示例#24
0
def test_files_verifiers():
    if(not on_travis):
        return
    verify_folder(abs_path('./hello/world'))
    assert(os.path.exists(abs_path('./hello')) == True)
    assert(os.path.exists(abs_path('./hello/world')) == True)
    remove(abs_path('./hello/world'))
    assert(os.path.exists(abs_path('./hello')) == True)
    assert(os.path.exists(abs_path('./hello/world')) == False)
    verify_file(abs_path('./hello/world/helloworld.py'))
    assert(os.path.exists(abs_path('./hello')) == True)
    assert(os.path.exists(abs_path('./hello/world')) == True)
    assert(os.path.exists(abs_path('./hello/world/helloworld.py')) == True)
    remove(abs_path('./hello'))
    assert(os.path.exists(abs_path('./hello')) == False)
    assert(os.path.exists(abs_path('./hello/world')) == False)
    assert(os.path.exists(abs_path('./hello/world/helloworld.py')) == False)
from srblib import abs_path
import os
data_dir = abs_path('./datasets')
file_name = os.path.join(data_dir, 'Eluvio_DS_Challenge.csv')
n_train_samples = 254618
n_val_samples = 127309
n_test_samples = 127309

# file_name = abs_path('./datasets/temp_data.csv')
# n_train_samples = 14
# n_val_samples = 7
# n_test_samples = 7
示例#26
0
import os

from srblib import abs_path
from srblib import SrbJson

config_file_path = abs_path('~/.config/exam_scheduler/config.json')
default_output_xlsx_path = abs_path('./output.xls')

_default_room_list = None
_default_teachers_list = None
_default_schedule_list = None

if os.path.exists(abs_path('input/')):
    for fname in os.listdir(abs_path('input/')):
        fname = 'input/' + fname
        if not _default_room_list and 'room_list' in fname:
            _default_room_list = abs_path(fname)
        elif not _default_teachers_list and 'teachers_list' in fname:
            _default_teachers_list = abs_path(fname)
        elif not _default_schedule_list and 'schedule_list' in fname:
            _default_schedule_list = abs_path(fname)

for fname in os.listdir(abs_path('./')):
    if not _default_room_list and 'room_list' in fname:
        _default_room_list = abs_path(fname)
    elif not _default_teachers_list and 'teachers_list' in fname:
        _default_teachers_list = abs_path(fname)
    elif not _default_schedule_list and 'schedule_list' in fname:
        _default_schedule_list = abs_path(fname)

_config_template = \
        hog2 = hog(h2, pixels_per_cell=(16, 16))
        out, _ = pearsonr(hog1, hog2)

    elif metric_name.lower() == 'spearman':
        out, _ = spearmanr(h1, h2, axis=None)

    else:
        print(f'Still not implemented.\nExiting')
        sys.exit(1)

    return out


########################################################################################################################
if __name__ == '__main__':
    base_img_dir = abs_path(settings.imagenet_val_path)
    # base_img_dir = '/home/naman/CS231n/heatmap_tests/images/ILSVRC2012_img_val'
    # text_file = f'/home/naman/CS231n/heatmap_tests/' \
    #             f'Madri/Madri_New/robustness_applications/img_name_files/' \
    #             f'time_15669152608009198_seed_0_' \
    #             f'common_correct_imgs_model_names_madry_ressnet50_googlenet.txt'
    s_time = time.time()
    f_time = ''.join(str(s_time).split('.'))
    args = get_arguments()
    im_label_map = eutils.imagenet_label_mappings()
    eutils.mkdir_p(args.out_path)

    img_filenames = os.listdir(args.input_dir_path)
    img_filenames = [
        i for i in img_filenames if 'ILSVRC2012_val_000' in i
        and int(i.split('_')[-1]) in range(1, 50001)
示例#28
0
def test_Args():
    if not on_travis:
        return
    print()
    cwd = abs_path(os.getcwd())
    try:
        loc = cwd+'/test/contests/837'
        os.chdir(loc)
        remove(loc+'/.coolkit')

        args = {}
        args['c_name'] = '837'
        args['c_type'] = 'contest'
        args['p_name'] = None
        args['c_site'] = 'codeforces'
        Args.init_repo(args)
        print(Colour.CYAN+'Content of confing file'+Colour.END)
        os.system('cat '+loc+'/.coolkit/config')
        print(Colour.CYAN+'trying to init it again'+Colour.END)
        Args.init_repo(args)

        print(Colour.CYAN+'setting problem name to A'+Colour.END)
        Args.set_local_config({'p_name':'A'})
        print(Colour.CYAN+'Content of confing file'+Colour.END)
        os.system('cat '+loc+'/.coolkit/config')

        print(Colour.CYAN+'Deinitialize the folder'+Colour.END)
        remove(loc+'/.coolkit')

        print(Colour.CYAN+'Try to run the file'+Colour.END)
        os.system('coolkit run one.cpp')

        if(os.environ['USER'] == 'travis'):
            os.system('coolkit config --user coolkit --pswd coolkit')
        print(Colour.CYAN+'Try to submit wrong file'+Colour.END)
        os.system('coolkit submit three.cpp')

        if(utils.do_online_test()):
            print(Colour.CYAN+'Try to submit right file'+Colour.END)
            make_unique(loc)
            os.system('coolkit submit hidden_one.cpp')
            remove(loc+'/hidden_one.cpp')

        print(Colour.CYAN+'Deinitialize the folder'+Colour.END)
        remove(loc+'/.coolkit')

        remove('~/.config/coolkit/contest/222')
        print(Colour.CYAN+'Fetching some contest'+Colour.END)
        os.system('coolkit fetch -c 222 ')
        print(Colour.CYAN+'Fetching contest without force'+Colour.END)
        os.system('coolkit fetch -c 222')
        print(Colour.CYAN+'After making files defected'+Colour.END)
        os.remove(abs_path('~/.config/coolkit/contest/222/prob/A/io/Input1'))
        os.system('coolkit fetch -c 222')
        remove('~/.config/coolkit/contest/222')
        os.chdir(cwd)

    except Exception as e:
        # do clean up even in case of exception
        loc = cwd+'/test/contests/837'
        remove('~/.config/coolkit/contest/222')
        remove(loc+'/.coolkit')
        remove(loc+'/hidden_one.cpp')
        os.chdir(cwd)
        raise e
def get_arguments():
    # Initialize the parser
    parser = argparse.ArgumentParser(
        description='Paramters for sensitivity analysis of heatmaps')

    parser.add_argument('-idp',
                        '--input_dir_path',
                        help='Path of the input directory',
                        metavar='DIR')

    parser.add_argument(
        '-op',
        '--out_path',
        help=
        'Path of the output directory where you want to save the text files (Default is ./)'
    )

    parser.add_argument(
        '-mn',
        '--method_name',
        choices=['sg'],
        #['occlusion', 'ig', 'sg', 'grad', 'lime', 'mp', 'inpgrad'],
        help='Method you are analysing')

    parser.add_argument('--exp_num',
                        choices=[
                            'a30',
                            'a31',
                        ],
                        help='Which experiment of SmoothGrad')

    parser.add_argument('--metric_name',
                        choices=['ssim', 'hog', 'spearman'],
                        help='Metric to be computed')

    # parser.add_argument('--num_variations', type=int,
    #                     help='Number of variations for a particular method.')

    # parser.add_argument('--no_img_name_dir_flag', action='store_false', default=True,
    #                     help=f'Flag to say that image name is stored as seperate directory in the input path.'
    #                          f'Default=True')
    #
    # parser.add_argument('--no_model_name_dir_flag', action='store_false', default=True,
    #                     help=f'Flag to say that model name is stored as seperate directory in the input path. '
    #                          f'Default=True')

    parser.add_argument(
        '--idx_flag',
        type=int,
        help=f'Flag whether to use some images in the folder (1) or all (0). '
        f'This is just for testing purposes. '
        f'Default=0',
        default=0,
    )

    parser.add_argument(
        '-s_idx',
        '--start_idx',
        type=int,
        help='Start index for selecting images. Default: 0',
        default=0,
    )

    parser.add_argument(
        '-e_idx',
        '--end_idx',
        type=int,
        help='End index for selecting images. Default: 2K',
        default=1735,
    )

    # parser.add_argument('--if_random', action='store_true', default=False,
    #                     help=f'Flag to say you want to compute results for baseline'
    #                          f'Default=False')

    # Parse the arguments
    args = parser.parse_args()
    args.no_model_name_dir_flag = False
    args.if_random = False
    args.no_img_name_dir_flag = True

    # if args.if_random:
    #     np.random.seed(0)

    # if args.num_variations is None:
    #     print('Please provide this number.\nExiting')
    #     sys.exit(0)
    # elif args.num_variations < 2:
    #     print('This number cant be less than 2.\nExiting')
    #     sys.exit(0)

    if args.method_name is None:
        print('Please provide the name of the method.\nExiting')
        sys.exit(0)

    if args.exp_num is None:
        print('Please provide the experiment number.\nExiting')
        sys.exit(0)

    if args.metric_name is None:
        print('Please provide the name of the metric.\nExiting')
        sys.exit(0)

    if args.input_dir_path is None:
        print('Please provide image dir path. Exiting')
        sys.exit(1)
    args.input_dir_path = abs_path(args.input_dir_path)

    if args.out_path is None:
        args.out_path = './'
    args.out_path = os.path.abspath(args.out_path)

    return args
    ## Testing loop
    tot_loss = 0
    for l_idx, test_batch in enumerate(test_loader):
        ## Put data on device
        for key in test_batch.keys():
            test_batch[key] = test_batch[key].to(torch_device)

        ## Compute the loss
        loss = model._step(test_batch).item()
        tot_loss += loss

        if verbose:
            print(f'Type: Test, '
                  f'BatchIdx: {l_idx+1: 3d}/{len(test_loader)}, '
                  f'Per_Step_Test_Loss: {loss: 8.3f}')

    avg_loss = tot_loss / len(test_loader)
    print(f'Avergae test loss is {avg_loss}')


if __name__ == '__main__':
    # model_path = '/home/nzb0040/eluvio/lightning_logs/best_model_checkpoint-epoch=29-val_loss=290297.96875-step_count=0.ckpt'
    args = get_arguments()
    # import ipdb
    # ipdb.set_trace()
    main(model_path=abs_path(args.model_path),
         batch_sz=args.test_batch_size,
         num_workers=args.num_workers,
         pin_memory=args.pin_memory,
         verbose=args.verbose)