示例#1
0
  def eval_multi(self, inc_epoch=True):
    """
    Run the evaluation on multiple attacks.
    """
    sess = self.sess
    preds = self.preds
    x = self.x_pre
    y = self.y
    X_train = self.X_train
    Y_train = self.Y_train
    X_test = self.X_test
    Y_test = self.Y_test
    writer = self.writer

    self.summary = tf.Summary()
    report = {}

    # Evaluate on train set
    subsample_factor = 100
    X_train_subsampled = X_train[::subsample_factor]
    Y_train_subsampled = Y_train[::subsample_factor]
    acc_train = model_eval(sess, x, y, preds, X_train_subsampled,
                           Y_train_subsampled, args=self.eval_params)
    self.log_value('train_accuracy_subsampled', acc_train,
                   'Clean accuracy, subsampled train')
    report['train'] = acc_train

    # Evaluate on the test set
    acc = model_eval(sess, x, y, preds, X_test, Y_test,
                     args=self.eval_params)
    self.log_value('test_accuracy_natural', acc,
                   'Clean accuracy, natural test')
    report['test'] = acc

    # Evaluate against adversarial attacks
    if self.epoch % self.hparams.eval_iters == 0:
      for att_type in self.attack_type_test:
        _, preds_adv = self.attacks[att_type]
        acc = self.eval_advs(x, y, preds_adv, X_test, Y_test, att_type)
        report[att_type] = acc

    if self.writer:
      writer.add_summary(self.summary, self.epoch)

    # Add examples of adversarial examples to the summary
    if self.writer and self.epoch % 20 == 0 and self.sum_op is not None:
      sm_val = self.sess.run(self.sum_op,
                             feed_dict={x: X_test[:self.batch_size],
                                        y: Y_test[:self.batch_size]})
      if self.writer:
        writer.add_summary(sm_val)

    self.epoch += 1 if inc_epoch else 0

    return report
示例#2
0
 def evaluate():
     # Evaluate the accuracy of the MNIST model on legitimate test examples
     eval_params = {'batch_size': batch_size}
     acc = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
     report.clean_train_clean_eval = acc
     #        assert X_test.shape[0] == test_end - test_start, X_test.shape
     print('Test accuracy on legitimate examples: %0.4f' % acc)
示例#3
0
def prep_bbox(sess,
              x,
              y,
              x_train,
              y_train,
              x_test,
              y_test,
              nb_epochs,
              batch_size,
              learning_rate,
              rng,
              nb_classes=10,
              img_rows=28,
              img_cols=28,
              nchannels=1):
    """
  Define and train a model that simulates the "remote"
  black-box oracle described in the original paper.
  :param sess: the TF session
  :param x: the input placeholder for MNIST
  :param y: the ouput placeholder for MNIST
  :param x_train: the training data for the oracle
  :param y_train: the training labels for the oracle
  :param x_test: the testing data for the oracle
  :param y_test: the testing labels for the oracle
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param rng: numpy.random.RandomState
  :return:
  """

    # Define TF model graph (for the black-box model)
    nb_filters = 64
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    loss = CrossEntropy(model, smoothing=0.1)
    predictions = model.get_logits(x)
    print("Defined TensorFlow model graph.")

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    train(sess, loss, x_train, y_train, args=train_params, rng=rng)

    # Print out the accuracy on legitimate data
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess,
                          x,
                          y,
                          predictions,
                          x_test,
                          y_test,
                          args=eval_params)
    print('Test accuracy of black-box on legitimate test '
          'examples: ' + str(accuracy))

    return model, predictions, accuracy
示例#4
0
 def evaluate():
     acc = model_eval(sess,
                      x,
                      y,
                      preds,
                      x_test,
                      y_test,
                      args={'batch_size': FLAGS.batch_size})
     print('Test accuracy on test examples: %0.4f' % acc)
 def do_eval(preds, x_set, y_set, report_key, is_adv=None):
   acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
   if is_adv is None:
     report_text = None
   elif is_adv:
     report_text = 'adversarial'
   else:
     report_text = 'legitimate'
   if report_text:
     print('Test accuracy on %s examples: %0.4f' % (report_text, acc))
示例#6
0
def main(argv):
  checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)

  if checkpoint is None:
    raise ValueError("Couldn't find latest checkpoint in " +
                     FLAGS.checkpoint_dir)

  train_start = 0
  train_end = 60000
  test_start = 0
  test_end = 10000
  X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                train_end=train_end,
                                                test_start=test_start,
                                                test_end=test_end)

  assert Y_train.shape[1] == 10

  # NOTE: for compatibility with Madry Lab downloadable checkpoints,
  # we cannot enclose this in a scope or do anything else that would
  # change the automatic naming of the variables.
  model = MadryMNIST()

  x_input = tf.placeholder(tf.float32, shape=[None, 784])
  x_image = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
  y = tf.placeholder(tf.float32, shape=[None, 10])

  if FLAGS.attack_type == 'fgsm':
    fgsm = FastGradientMethod(model)
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    adv_x = fgsm.generate(x_image, **fgsm_params)
  elif FLAGS.attack_type == 'bim':
    bim = BasicIterativeMethod(model)
    bim_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.,
                  'nb_iter': 50,
                  'eps_iter': .01}
    adv_x = bim.generate(x_image, **bim_params)
  else:
    raise ValueError(FLAGS.attack_type)
  preds_adv = model.get_probs(adv_x)

  saver = tf.train.Saver()

  with tf.Session() as sess:
    # Restore the checkpoint
    saver.restore(sess, checkpoint)

    # Evaluate the accuracy of the MNIST model on adversarial examples
    eval_par = {'batch_size': FLAGS.batch_size}
    t1 = time.time()
    acc = model_eval(
        sess, x_image, y, preds_adv, X_test, Y_test, args=eval_par)
    t2 = time.time()
    print("Took", t2 - t1, "seconds")
    print('Test accuracy on adversarial examples: %0.4f\n' % acc)
示例#7
0
    def evaluate_2():
        # Accuracy of adversarially trained model on legitimate test inputs
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on legitimate examples: %0.4f' % accuracy)
        report.adv_train_clean_eval = accuracy

        # Accuracy of the adversarially trained model on adversarial examples
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2_adv,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on adversarial examples: %0.4f' % accuracy)
        report.adv_train_adv_eval = accuracy
 def do_eval(preds, x_set, y_set, report_key, is_adv=None):
     """
 Run the evaluation and print the results.
 """
     acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
     setattr(report, report_key, acc)
     if is_adv is None:
         report_text = None
     elif is_adv:
         report_text = 'adversarial'
     else:
         report_text = 'legitimate'
     if report_text:
         print('Test accuracy on %s examples: %0.4f' % (report_text, acc))
示例#9
0
  def eval_advs(self, x, y, preds_adv, X_test, Y_test, att_type):
    """
    Evaluate the accuracy of the model on adversarial examples

    :param x: symbolic input to model.
    :param y: symbolic variable for the label.
    :param preds_adv: symbolic variable for the prediction on an
                      adversarial example.
    :param X_test: NumPy array of test set inputs.
    :param Y_test: NumPy array of test set labels.
    :param att_type: name of the attack.
    """
    end = (len(X_test) // self.batch_size) * self.batch_size

    if self.hparams.fast_tests:
      end = 10*self.batch_size

    acc = model_eval(self.sess, x, y, preds_adv, X_test[:end],
                     Y_test[:end], args=self.eval_params)
    self.log_value('test_accuracy_%s' % att_type, acc,
                   'Test accuracy on adversarial examples')
    return acc
示例#10
0
 def do_eval(preds, x_set, y_set, report_key):
     acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
     setattr(report, report_key, acc)
     print('Test accuracy on legitimate examples: %0.4f' % (acc))
def mnist_tutorial_jsma(train_start=0, train_end=60000, test_start=0,
                        test_end=10000, viz_enabled=VIZ_ENABLED,
                        nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
                        source_samples=SOURCE_SAMPLES,
                        learning_rate=LEARNING_RATE):
  """
  MNIST tutorial for the Jacobian-based saliency map approach (JSMA)
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param viz_enabled: (boolean) activate plots of adversarial examples
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param nb_classes: number of output classes
  :param source_samples: number of test inputs to attack
  :param learning_rate: learning rate for training
  :return: an AccuracyReport object
  """
  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Create TF session and set as Keras backend session
  sess = tf.Session()
  print("Created TensorFlow session.")

  set_log_level(logging.DEBUG)

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Obtain Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                        nchannels))
  y = tf.placeholder(tf.float32, shape=(None, nb_classes))

  nb_filters = 64
  # Define TF model graph
  model = ModelBasicCNN('model1', nb_classes, nb_filters)
  preds = model.get_logits(x)
  loss = CrossEntropy(model, smoothing=0.1)
  print("Defined TensorFlow model graph.")

  ###########################################################################
  # Training the model using TensorFlow
  ###########################################################################

  # Train an MNIST model
  train_params = {
      'nb_epochs': nb_epochs,
      'batch_size': batch_size,
      'learning_rate': learning_rate
  }
  sess.run(tf.global_variables_initializer())
  rng = np.random.RandomState([2017, 8, 30])
  train(sess, loss, x_train, y_train, args=train_params, rng=rng)

  # Evaluate the accuracy of the MNIST model on legitimate test examples
  eval_params = {'batch_size': batch_size}
  accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
  assert x_test.shape[0] == test_end - test_start, x_test.shape
  print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
  report.clean_train_clean_eval = accuracy

  ###########################################################################
  # Craft adversarial examples using the Jacobian-based saliency map approach
  ###########################################################################
  print('Crafting ' + str(source_samples) + ' * ' + str(nb_classes - 1) +
        ' adversarial examples')

  # Keep track of success (adversarial example classified in target)
  results = np.zeros((nb_classes, source_samples), dtype='i')

  # Rate of perturbed features for each test set example and target class
  perturbations = np.zeros((nb_classes, source_samples), dtype='f')

  # Initialize our array for grid visualization
  grid_shape = (nb_classes, nb_classes, img_rows, img_cols, nchannels)
  grid_viz_data = np.zeros(grid_shape, dtype='f')

  # Instantiate a SaliencyMapMethod attack object
  jsma = SaliencyMapMethod(model, sess=sess)
  jsma_params = {'theta': 1., 'gamma': 0.1,
                 'clip_min': 0., 'clip_max': 1.,
                 'y_target': None}

  figure = None
  # Loop over the samples we want to perturb into adversarial examples
  for sample_ind in xrange(0, source_samples):
    print('--------------------------------------')
    print('Attacking input %i/%i' % (sample_ind + 1, source_samples))
    sample = x_test[sample_ind:(sample_ind + 1)]

    # We want to find an adversarial example for each possible target class
    # (i.e. all classes that differ from the label given in the dataset)
    current_class = int(np.argmax(y_test[sample_ind]))
    target_classes = other_classes(nb_classes, current_class)

    # For the grid visualization, keep original images along the diagonal
    grid_viz_data[current_class, current_class, :, :, :] = np.reshape(
        sample, (img_rows, img_cols, nchannels))

    # Loop over all target classes
    for target in target_classes:
      print('Generating adv. example for target class %i' % target)

      # This call runs the Jacobian-based saliency map approach
      one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
      one_hot_target[0, target] = 1
      jsma_params['y_target'] = one_hot_target
      adv_x = jsma.generate_np(sample, **jsma_params)

      # Check if success was achieved
      res = int(model_argmax(sess, x, preds, adv_x) == target)

      # Computer number of modified features
      adv_x_reshape = adv_x.reshape(-1)
      test_in_reshape = x_test[sample_ind].reshape(-1)
      nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0]
      percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0]

      # Display the original and adversarial images side-by-side
      if viz_enabled:
        figure = pair_visual(
            np.reshape(sample, (img_rows, img_cols, nchannels)),
            np.reshape(adv_x, (img_rows, img_cols, nchannels)), figure)

      # Add our adversarial example to our grid data
      grid_viz_data[target, current_class, :, :, :] = np.reshape(
          adv_x, (img_rows, img_cols, nchannels))

      # Update the arrays for later analysis
      results[target, sample_ind] = res
      perturbations[target, sample_ind] = percent_perturb

  print('--------------------------------------')

  # Compute the number of adversarial examples that were successfully found
  nb_targets_tried = ((nb_classes - 1) * source_samples)
  succ_rate = float(np.sum(results)) / nb_targets_tried
  print('Avg. rate of successful adv. examples {0:.4f}'.format(succ_rate))
  report.clean_train_adv_eval = 1. - succ_rate

  # Compute the average distortion introduced by the algorithm
  percent_perturbed = np.mean(perturbations)
  print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturbed))

  # Compute the average distortion introduced for successful samples only
  percent_perturb_succ = np.mean(perturbations * (results == 1))
  print('Avg. rate of perturbed features for successful '
        'adversarial examples {0:.4f}'.format(percent_perturb_succ))

  # Close TF session
  sess.close()

  # Finally, block & display a grid of all the adversarial examples
  if viz_enabled:
    import matplotlib.pyplot as plt
    plt.close(figure)
    _ = grid_visual(grid_viz_data)

  return report
示例#12
0
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=NB_EPOCHS,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   train_dir=TRAIN_DIR,
                   filename=FILENAME,
                   load_model=LOAD_MODEL,
                   testing=False,
                   label_smoothing=0.1):
    """
  MNIST CleverHans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param train_dir: Directory storing the saved model
  :param filename: Filename to save model under
  :param load_model: True for load, False for not load
  :param testing: if true, test error is calculated
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """
    tf.keras.backend.set_learning_phase(0)

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    if keras.backend.image_data_format() != 'channels_last':
        raise NotImplementedError(
            "this tutorial requires keras to be configured to channels_last format"
        )

    # Create TF session and set as Keras backend session
    sess = tf.Session()
    keras.backend.set_session(sess)

    # Get MNIST test data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Obtain Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Define TF model graph
    model = cnn_model(img_rows=img_rows,
                      img_cols=img_cols,
                      channels=nchannels,
                      nb_filters=64,
                      nb_classes=nb_classes)
    preds = model(x)
    print("Defined TensorFlow model graph.")

    def evaluate():
        # Evaluate the accuracy of the MNIST model on legitimate test examples
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
        report.clean_train_clean_eval = acc
        #        assert X_test.shape[0] == test_end - test_start, X_test.shape
        print('Test accuracy on legitimate examples: %0.4f' % acc)

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'train_dir': train_dir,
        'filename': filename
    }

    rng = np.random.RandomState([2017, 8, 30])
    if not os.path.exists(train_dir):
        os.mkdir(train_dir)

    ckpt = tf.train.get_checkpoint_state(train_dir)
    print(train_dir, ckpt)
    ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
    wrap = KerasModelWrapper(model)

    if load_model and ckpt_path:
        saver = tf.train.Saver()
        print(ckpt_path)
        saver.restore(sess, ckpt_path)
        print("Model loaded from: {}".format(ckpt_path))
        evaluate()
    else:
        print("Model was not loaded, training from scratch.")
        loss = CrossEntropy(wrap, smoothing=label_smoothing)
        train(sess,
              loss,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng)

    # Calculate training error
    if testing:
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess, x, y, preds, x_train, y_train, args=eval_params)
        report.train_clean_train_clean_eval = acc

    # Initialize the Fast Gradient Sign Method (FGSM) attack object and graph
    fgsm = FastGradientMethod(wrap, sess=sess)
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    adv_x = fgsm.generate(x, **fgsm_params)
    # Consider the attack to be constant
    adv_x = tf.stop_gradient(adv_x)
    preds_adv = model(adv_x)

    # Evaluate the accuracy of the MNIST model on adversarial examples
    eval_par = {'batch_size': batch_size}
    acc = model_eval(sess, x, y, preds_adv, x_test, y_test, args=eval_par)
    print('Test accuracy on adversarial examples: %0.4f\n' % acc)
    report.clean_train_adv_eval = acc

    # Calculating train error
    if testing:
        eval_par = {'batch_size': batch_size}
        acc = model_eval(sess,
                         x,
                         y,
                         preds_adv,
                         x_train,
                         y_train,
                         args=eval_par)
        report.train_clean_train_adv_eval = acc

    print("Repeating the process, using adversarial training")
    # Redefine TF model graph
    model_2 = cnn_model(img_rows=img_rows,
                        img_cols=img_cols,
                        channels=nchannels,
                        nb_filters=64,
                        nb_classes=nb_classes)
    wrap_2 = KerasModelWrapper(model_2)
    preds_2 = model_2(x)
    fgsm2 = FastGradientMethod(wrap_2, sess=sess)

    def attack(x):
        return fgsm2.generate(x, **fgsm_params)

    preds_2_adv = model_2(attack(x))
    loss_2 = CrossEntropy(wrap_2, smoothing=label_smoothing, attack=attack)

    def evaluate_2():
        # Accuracy of adversarially trained model on legitimate test inputs
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on legitimate examples: %0.4f' % accuracy)
        report.adv_train_clean_eval = accuracy

        # Accuracy of the adversarially trained model on adversarial examples
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2_adv,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on adversarial examples: %0.4f' % accuracy)
        report.adv_train_adv_eval = accuracy

    # Perform and evaluate adversarial training
    train(sess,
          loss_2,
          x_train,
          y_train,
          evaluate=evaluate_2,
          args=train_params,
          rng=rng)

    # Calculate training errors
    if testing:
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2,
                              x_train,
                              y_train,
                              args=eval_params)
        report.train_adv_train_clean_eval = accuracy
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2_adv,
                              x_train,
                              y_train,
                              args=eval_params)
        report.train_adv_train_adv_eval = accuracy

    return report
示例#13
0
def mnist_tutorial_cw(train_start=0,
                      train_end=60000,
                      test_start=0,
                      test_end=10000,
                      viz_enabled=VIZ_ENABLED,
                      nb_epochs=NB_EPOCHS,
                      batch_size=BATCH_SIZE,
                      source_samples=SOURCE_SAMPLES,
                      learning_rate=LEARNING_RATE,
                      attack_iterations=ATTACK_ITERATIONS,
                      model_path=MODEL_PATH,
                      targeted=TARGETED):
    """
  MNIST tutorial for Carlini and Wagner's attack
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param viz_enabled: (boolean) activate plots of adversarial examples
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param nb_classes: number of output classes
  :param source_samples: number of test inputs to attack
  :param learning_rate: learning rate for training
  :param model_path: path to the model file
  :param targeted: should we run a targeted attack? or untargeted?
  :return: an AccuracyReport object
  """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Create TF session
    sess = tf.Session()
    print("Created TensorFlow session.")

    set_log_level(logging.DEBUG)

    # Get MNIST test data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Obtain Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))
    nb_filters = 64

    # Define TF model graph
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    preds = model.get_logits(x)
    loss = CrossEntropy(model, smoothing=0.1)
    print("Defined TensorFlow model graph.")

    ###########################################################################
    # Training the model using TensorFlow
    ###########################################################################

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'filename': os.path.split(model_path)[-1]
    }

    rng = np.random.RandomState([2017, 8, 30])
    # check if we've trained before, and if we have, use that pre-trained model
    if os.path.exists(model_path + ".meta"):
        tf_model_load(sess, model_path)
    else:
        train(sess, loss, x_train, y_train, args=train_params, rng=rng)
        saver = tf.train.Saver()
        saver.save(sess, model_path)

    # Evaluate the accuracy of the MNIST model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
    assert x_test.shape[0] == test_end - test_start, x_test.shape
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
    report.clean_train_clean_eval = accuracy

    ###########################################################################
    # Craft adversarial examples using Carlini and Wagner's approach
    ###########################################################################
    nb_adv_per_sample = str(nb_classes - 1) if targeted else '1'
    print('Crafting ' + str(source_samples) + ' * ' + nb_adv_per_sample +
          ' adversarial examples')
    print("This could take some time ...")

    # Instantiate a CW attack object
    cw = CarliniWagnerL2(model, sess=sess)

    if viz_enabled:
        assert source_samples == nb_classes
        idxs = [
            np.where(np.argmax(y_test, axis=1) == i)[0][0]
            for i in range(nb_classes)
        ]
    if targeted:
        if viz_enabled:
            # Initialize our array for grid visualization
            grid_shape = (nb_classes, nb_classes, img_rows, img_cols,
                          nchannels)
            grid_viz_data = np.zeros(grid_shape, dtype='f')

            adv_inputs = np.array([[instance] * nb_classes
                                   for instance in x_test[idxs]],
                                  dtype=np.float32)
        else:
            adv_inputs = np.array([[instance] * nb_classes
                                   for instance in x_test[:source_samples]],
                                  dtype=np.float32)

        one_hot = np.zeros((nb_classes, nb_classes))
        one_hot[np.arange(nb_classes), np.arange(nb_classes)] = 1

        adv_inputs = adv_inputs.reshape(
            (source_samples * nb_classes, img_rows, img_cols, nchannels))
        adv_ys = np.array([one_hot] * source_samples,
                          dtype=np.float32).reshape(
                              (source_samples * nb_classes, nb_classes))
        yname = "y_target"
    else:
        if viz_enabled:
            # Initialize our array for grid visualization
            grid_shape = (nb_classes, 2, img_rows, img_cols, nchannels)
            grid_viz_data = np.zeros(grid_shape, dtype='f')

            adv_inputs = x_test[idxs]
        else:
            adv_inputs = x_test[:source_samples]

        adv_ys = None
        yname = "y"

    if targeted:
        cw_params_batch_size = source_samples * nb_classes
    else:
        cw_params_batch_size = source_samples
    cw_params = {
        'binary_search_steps': 1,
        yname: adv_ys,
        'max_iterations': attack_iterations,
        'learning_rate': CW_LEARNING_RATE,
        'batch_size': cw_params_batch_size,
        'initial_const': 10
    }

    adv = cw.generate_np(adv_inputs, **cw_params)

    eval_params = {'batch_size': np.minimum(nb_classes, source_samples)}
    if targeted:
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  adv,
                                  adv_ys,
                                  args=eval_params)
    else:
        if viz_enabled:
            err = model_eval(sess,
                             x,
                             y,
                             preds,
                             adv,
                             y_test[idxs],
                             args=eval_params)
            adv_accuracy = 1 - err
        else:
            err = model_eval(sess,
                             x,
                             y,
                             preds,
                             adv,
                             y_test[:source_samples],
                             args=eval_params)
            adv_accuracy = 1 - err

    if viz_enabled:
        for j in range(nb_classes):
            if targeted:
                for i in range(nb_classes):
                    grid_viz_data[i, j] = adv[i * nb_classes + j]
            else:
                grid_viz_data[j, 0] = adv_inputs[j]
                grid_viz_data[j, 1] = adv[j]

        print(grid_viz_data.shape)

    print('--------------------------------------')

    # Compute the number of adversarial examples that were successfully found
    print('Avg. rate of successful adv. examples {0:.4f}'.format(adv_accuracy))
    report.clean_train_adv_eval = 1. - adv_accuracy

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(
        np.sum((adv - adv_inputs)**2, axis=(1, 2, 3))**.5)
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))

    # Close TF session
    sess.close()

    # Finally, block & display a grid of all the adversarial examples
    if viz_enabled:
        _ = grid_visual(grid_viz_data)

    return report
示例#14
0
def mnist_blackbox(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_classes=NB_CLASSES,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   nb_epochs=NB_EPOCHS,
                   holdout=HOLDOUT,
                   data_aug=DATA_AUG,
                   nb_epochs_s=NB_EPOCHS_S,
                   lmbda=LMBDA,
                   aug_batch_size=AUG_BATCH_SIZE):
    """
  MNIST tutorial for the black-box attack from arxiv.org/abs/1602.02697
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :return: a dictionary with:
           * black-box model accuracy on test set
           * substitute model accuracy on test set
           * black-box model accuracy on adversarial examples transferred
             from the substitute model
  """

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Dictionary used to keep track and return key accuracies
    accuracies = {}

    # Perform tutorial setup
    assert setup_tutorial()

    # Create TF session
    sess = tf.Session()

    # Get MNIST data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Initialize substitute training set reserved for adversary
    x_sub = x_test[:holdout]
    y_sub = np.argmax(y_test[:holdout], axis=1)

    # Redefine test set as remaining samples unavailable to adversaries
    x_test = x_test[holdout:]
    y_test = y_test[holdout:]

    # Obtain Image parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Seed random number generator so tutorial is reproducible
    rng = np.random.RandomState([2017, 8, 30])

    # Simulate the black-box model locally
    # You could replace this by a remote labeling API for instance
    print("Preparing the black-box model.")
    prep_bbox_out = prep_bbox(sess, x, y, x_train, y_train, x_test, y_test,
                              nb_epochs, batch_size, learning_rate, rng,
                              nb_classes, img_rows, img_cols, nchannels)
    model, bbox_preds, accuracies['bbox'] = prep_bbox_out

    # Train substitute using method from https://arxiv.org/abs/1602.02697
    print("Training the substitute model.")
    train_sub_out = train_sub(sess, x, y, bbox_preds, x_sub, y_sub, nb_classes,
                              nb_epochs_s, batch_size, learning_rate, data_aug,
                              lmbda, aug_batch_size, rng, img_rows, img_cols,
                              nchannels)
    model_sub, preds_sub = train_sub_out

    # Evaluate the substitute model on clean test examples
    eval_params = {'batch_size': batch_size}
    acc = model_eval(sess, x, y, preds_sub, x_test, y_test, args=eval_params)
    accuracies['sub'] = acc

    # Initialize the Fast Gradient Sign Method (FGSM) attack object.
    fgsm_par = {'eps': 0.3, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.}
    fgsm = FastGradientMethod(model_sub, sess=sess)

    # Craft adversarial examples using the substitute
    eval_params = {'batch_size': batch_size}
    x_adv_sub = fgsm.generate(x, **fgsm_par)

    # Evaluate the accuracy of the "black-box" model on adversarial examples
    accuracy = model_eval(sess,
                          x,
                          y,
                          model.get_logits(x_adv_sub),
                          x_test,
                          y_test,
                          args=eval_params)
    print('Test accuracy of oracle on adversarial examples generated '
          'using the substitute: ' + str(accuracy))
    accuracies['bbox_on_sub_adv_ex'] = accuracy

    return accuracies
示例#15
0
def main(argv):

    model_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)

    if model_file is None:
        print('No model found')
        sys.exit()

    cifar = cifar10_input.CIFAR10Data(FLAGS.dataset_dir)

    nb_classes = 10
    X_test = cifar.eval_data.xs
    Y_test = to_categorical(cifar.eval_data.ys, nb_classes)
    assert Y_test.shape[1] == 10.

    set_log_level(logging.DEBUG)

    with tf.Session() as sess:

        x = tf.placeholder(tf.float32, shape=(None, 32, 32, 3))
        y = tf.placeholder(tf.float32, shape=(None, 10))

        from src.FGSM.cleverhans.cleverhans.model_zoo.madry_lab_challenges.cifar10_model import make_wresnet
        model = make_wresnet()

        saver = tf.train.Saver()

        # Restore the checkpoint
        saver.restore(sess, model_file)

        nb_samples = FLAGS.nb_samples

        attack_params = {
            'batch_size': FLAGS.batch_size,
            'clip_min': 0.,
            'clip_max': 255.
        }

        if FLAGS.attack_type == 'cwl2':
            from src.FGSM.cleverhans.cleverhans.attacks import CarliniWagnerL2
            attacker = CarliniWagnerL2(model, sess=sess)
            attack_params.update({
                'binary_search_steps': 1,
                'max_iterations': 100,
                'learning_rate': 0.1,
                'initial_const': 10,
                'batch_size': 10
            })

        else:  # eps and eps_iter in range 0-255
            attack_params.update({'eps': 8, 'ord': np.inf})
            if FLAGS.attack_type == 'fgsm':
                from src.FGSM.cleverhans.cleverhans.attacks import FastGradientMethod
                attacker = FastGradientMethod(model, sess=sess)

            elif FLAGS.attack_type == 'pgd':
                attack_params.update({'eps_iter': 2, 'nb_iter': 20})
                from src.FGSM.cleverhans.cleverhans.attacks import MadryEtAl
                attacker = MadryEtAl(model, sess=sess)

        eval_par = {'batch_size': FLAGS.batch_size}

        if FLAGS.sweep:
            max_eps = 16
            epsilons = np.linspace(1, max_eps, max_eps)
            for e in epsilons:
                t1 = time.time()
                attack_params.update({'eps': e})
                x_adv = attacker.generate(x, **attack_params)
                preds_adv = model.get_probs(x_adv)
                acc = model_eval(sess,
                                 x,
                                 y,
                                 preds_adv,
                                 X_test[:nb_samples],
                                 Y_test[:nb_samples],
                                 args=eval_par)
                print('Epsilon %.2f, accuracy on adversarial' % e,
                      'examples %0.4f\n' % acc)
            t2 = time.time()
        else:
            t1 = time.time()
            x_adv = attacker.generate(x, **attack_params)
            preds_adv = model.get_probs(x_adv)
            acc = model_eval(sess,
                             x,
                             y,
                             preds_adv,
                             X_test[:nb_samples],
                             Y_test[:nb_samples],
                             args=eval_par)
            t2 = time.time()
            print('Test accuracy on adversarial examples %0.4f\n' % acc)
        print("Took", t2 - t1, "seconds")