def update_tree(self, image_slice, id, name): """ Update the DICOM Tree view. :param image_slice: Boolean indicating if it is an image slice or not :param id: ID for the selected file :param name: Name of the selected dataset if not an image file :return: """ self.model_tree.clear() if image_slice: filename = self.patient_dict_container.filepaths[id] dicom_tree_slice = DicomTree(filename) dict_tree = dicom_tree_slice.dict elif name == "rtdose": dict_tree = self.patient_dict_container.get("dict_dicom_tree_rtdose") elif name == "rtss": dict_tree = self.patient_dict_container.get("dict_dicom_tree_rtss") elif name == "rtplan": dict_tree = self.patient_dict_container.get("dict_dicom_tree_rtplan") else: dict_tree = None print("Error filename in update_tree function") parent_item = self.model_tree.invisibleRootItem() self.recurse_build_model(dict_tree, parent_item) self.init_headers_tree() self.tree_view.setModel(self.model_tree) self.init_parameters_tree() self.dicom_tree_layout.addWidget(self.tree_view)
def test_file_components(test_obj): """ Unit Test for DICOM Tree :test_tree: Window to be tested - DICOM Tree window :return: """ # Test initial values are correct and initial tree is clear file_count = len(test_obj.dicom_tree.special_files) + len( test_obj.main_window.dicom_tree.patient_dict_container.get( "pixmaps_axial")) assert test_obj.dicom_tree.model_tree.rowCount() == 0 assert test_obj.dicom_tree.selector.currentIndex() == 0 current_text = test_obj.dicom_tree.selector.currentText() assert current_text == "Select a DICOM dataset..." # Check tree loaded all files from patient_dict_container assert test_obj.dicom_tree.selector.count() - 1 == file_count # Loop through each file for i in range(1, file_count): # Set program to next file test_obj.dicom_tree.selector.setCurrentIndex(i) test_obj.dicom_tree.item_selected(i) current_text = test_obj.dicom_tree.selector.currentText() # Make New Tree to compare if i > len(test_obj.dicom_tree.special_files): index = i - len(test_obj.dicom_tree.special_files) - 1 name = test_obj.dicom_tree.patient_dict_container.filepaths[index] dicom_tree_slice = DicomTree(name) dict_tree = dicom_tree_slice.dict text = "Image Slice " + str(index + 1) assert current_text == text elif test_obj.dicom_tree.special_files[i - 1] == "rtss": dict_tree = test_obj.dicom_tree.patient_dict_container.get( "dict_dicom_tree_rtss") assert current_text == "RT Structure Set" elif test_obj.dicom_tree.special_files[i - 1] == "rtdose": dict_tree = test_obj.dicom_tree.patient_dict_container.get( "dict_dicom_tree_rtdose") assert current_text == "RT Dose" elif test_obj.dicom_tree.special_files[i - 1] == "rtplan": dict_tree = test_obj.dicom_tree.patient_dict_container.get( "dict_dicom_tree_rtplan") assert current_text == "RT Plan" else: dict_tree = None print("Error filename in update_tree function") # Loop Through Each Row parent = test_obj.dicom_tree.model_tree.invisibleRootItem() total_count = test_obj.dicom_tree.model_tree.rowCount() assert recursive_search(dict_tree, parent) == total_count
def get_patients_info(self): """ Retrieve the patient's study description of the fixed image and for the moving image (if it exists). """ patient_dict_container = PatientDictContainer() if not patient_dict_container.is_empty(): filename = patient_dict_container.filepaths[0] dicom_tree_slice = DicomTree(filename) dict_tree = dicom_tree_slice.dict try: self.fixed_image = dict_tree["Series Instance UID"][0] except: self.fixed_image = "" self.warning_label.setText( 'Couldn\'t find the series instance ' 'UID for the Fixed Image.') moving_dict_container = MovingDictContainer() if not moving_dict_container.is_empty(): filename = moving_dict_container.filepaths[0] dicom_tree_slice = DicomTree(filename) dict_tree = dicom_tree_slice.dict try: self.moving_image = dict_tree["Series Instance UID"][0] except: self.moving_image = "" self.warning_label.setText( 'Couldn\'t find the series instance ' 'UID for the Moving Image.') if moving_dict_container.is_empty() and self.moving_image != "": self.moving_image = "" self.fixed_image_placeholder.setText(str(self.fixed_image)) self.moving_image_placeholder.setText(str(self.moving_image))
def create_new_rtstruct(cls, progress_callback): """ Generates a new RTSS and edits the patient dict container. Used for batch processing. """ # Get common directory patient_dict_container = PatientDictContainer() file_path = patient_dict_container.filepaths.values() file_path = Path(os.path.commonpath(file_path)) # Get new RT Struct file path file_path = str(file_path.joinpath("rtss.dcm")) # Create RT Struct file progress_callback.emit(("Generating RT Structure Set", 60)) ct_uid_list = ImageLoading.get_image_uid_list( patient_dict_container.dataset) ds = ROI.create_initial_rtss_from_ct(patient_dict_container.dataset[0], file_path, ct_uid_list) ds.save_as(file_path) # Add RT Struct file path to patient dict container patient_dict_container.filepaths['rtss'] = file_path filepaths = patient_dict_container.filepaths # Add RT Struct dataset to patient dict container patient_dict_container.dataset['rtss'] = ds dataset = patient_dict_container.dataset # Set some patient dict container attributes patient_dict_container.set("file_rtss", filepaths['rtss']) patient_dict_container.set("dataset_rtss", dataset['rtss']) dicom_tree_rtss = DicomTree(filepaths['rtss']) patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) dict_pixluts = ImageLoading.get_pixluts(patient_dict_container.dataset) patient_dict_container.set("pixluts", dict_pixluts) rois = ImageLoading.get_roi_info(ds) patient_dict_container.set("rois", rois) patient_dict_container.set("selected_rois", []) patient_dict_container.set("dict_polygons_axial", {}) patient_dict_container.set("rtss_modified", True)
def load_temp_rtss(self, path, progress_callback, interrupt_flag): """ Generate a temporary rtss and load its data into MovingDictContainer :param path: str. The common root folder of all DICOM files. :param progress_callback: A signal that receives the current progress of the loading. :param interrupt_flag: A threading.Event() object that tells the function to stop loading. """ progress_callback.emit(("Generating temporary rtss...", 20)) moving_dict_container = MovingDictContainer() rtss_path = Path(path).joinpath('rtss.dcm') uid_list = ImageLoading.get_image_uid_list( moving_dict_container.dataset) rtss = create_initial_rtss_from_ct(moving_dict_container.dataset[0], rtss_path, uid_list) if interrupt_flag.is_set(): # Stop loading. print("stopped") return False progress_callback.emit(("Loading temporary rtss...", 50)) # Set ROIs rois = ImageLoading.get_roi_info(rtss) moving_dict_container.set("rois", rois) # Set pixluts dict_pixluts = ImageLoading.get_pixluts(moving_dict_container.dataset) moving_dict_container.set("pixluts", dict_pixluts) # Add RT Struct file path and dataset to moving dict container moving_dict_container.filepaths['rtss'] = rtss_path moving_dict_container.dataset['rtss'] = rtss # Set some moving dict container attributes moving_dict_container.set("file_rtss", rtss_path) moving_dict_container.set("dataset_rtss", rtss) ordered_dict = DicomTree(None).dataset_to_dict(rtss) moving_dict_container.set("dict_dicom_tree_rtss", ordered_dict) moving_dict_container.set("selected_rois", [])
def fixed_container_structure_modified(self, changes): """ Executes when a structure of fixed patient container is modified Displays indicator that structure has changed. Changes is a tuple of (new_dataset, description_of_changes) description_of_changes follows the format {"type_of_change": value_of_change}. Examples: {"rename": ["TOOTH", "TEETH"]} represents that the TOOTH structure has been renamed to TEETH. {"delete": ["TEETH", "MAXILLA"]} represents that the TEETH and MAXILLA structures have been deleted. {"draw": "AORTA"} represents that a new structure AORTA has been drawn. Note: Use {"draw": None} after multiple ROIs are generated (E.g., from ISO2ROI functionality), and use {"transfer":None} for ROI Transfer instead of calling this function multiple times. This will trigger auto save. """ new_dataset = changes[0] change_description = changes[1] # Only show the modified indicator if description_of_changes is # not {"draw": None}, as this description means that the RTSS # is autosaved, and therefore there is no need to tell the user # that the RTSS has been modified if not("draw" in change_description and change_description["draw"] is None) and \ not ("transfer" in change_description): self.show_modified_indicator() # If this is the first change made to the RTSS file, update the # dataset with the new one so that OnkoDICOM starts working off this # dataset rather than the original RTSS file. self.patient_dict_container.set("rtss_modified", True) self.patient_dict_container.set("dataset_rtss", new_dataset) # Refresh ROIs in main page self.patient_dict_container.set("rois", ImageLoading.get_roi_info(new_dataset)) self.rois = self.patient_dict_container.get("rois") contour_data = ImageLoading.get_raw_contour_data(new_dataset) self.patient_dict_container.set("raw_contour", contour_data[0]) self.patient_dict_container.set("num_points", contour_data[1]) pixluts = ImageLoading.get_pixluts(self.patient_dict_container.dataset) self.patient_dict_container.set("pixluts", pixluts) self.patient_dict_container.set( "list_roi_numbers", ordered_list_rois(self.patient_dict_container.get("rois"))) self.patient_dict_container.set("selected_rois", []) self.patient_dict_container.set("dict_polygons_axial", {}) self.patient_dict_container.set("dict_polygons_sagittal", {}) self.patient_dict_container.set("dict_polygons_coronal", {}) if "draw" in change_description or "transfer" in change_description: dicom_tree_rtss = DicomTree(None) dicom_tree_rtss.dataset = new_dataset dicom_tree_rtss.dict = dicom_tree_rtss.dataset_to_dict( dicom_tree_rtss.dataset) self.patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) self.color_dict = self.init_color_roi(self.patient_dict_container) self.patient_dict_container.set("roi_color_dict", self.color_dict) if self.patient_dict_container.has_attribute("raw_dvh"): # DVH will be outdated once changes to it are made, and # recalculation will be required. self.patient_dict_container.set("dvh_outdated", True) if self.patient_dict_container.has_attribute("raw_dvh"): # Rename structures in DVH list if "rename" in change_description: new_raw_dvh = self.patient_dict_container.get("raw_dvh") for key, dvh in new_raw_dvh.items(): if dvh.name == change_description["rename"][0]: dvh.name = change_description["rename"][1] break self.patient_dict_container.set("raw_dvh", new_raw_dvh) dvh2rtdose(new_raw_dvh) # Remove structures from DVH list - the only visible effect of # this section is the exported DVH csv if "delete" in change_description: list_of_deleted = [] new_raw_dvh = self.patient_dict_container.get("raw_dvh") for key, dvh in new_raw_dvh.items(): if dvh.name in change_description["delete"]: list_of_deleted.append(key) for key in list_of_deleted: new_raw_dvh.pop(key) self.patient_dict_container.set("raw_dvh", new_raw_dvh) dvh2rtdose(new_raw_dvh) # Refresh ROIs in DVH tab and DICOM View self.request_update_structures.emit() # Refresh structure tab self.update_content() if "draw" in change_description and change_description["draw"] is None: self.save_new_rtss_to_fixed_image_set(auto=True) elif "transfer" in change_description \ and change_description["transfer"] is None: self.save_new_rtss_to_fixed_image_set(auto=True)
def create_moving_model(): """ This function initializes all the attributes in the MovingDictContainer model required for the operation of the main window. This should be called before the main window's components are constructed, but after the initial values of the MovingDictContainer instance are set (i.e. dataset and filepaths). """ ############################## # LOAD PATIENT INFORMATION # ############################## moving_dict_container = MovingDictContainer() dataset = moving_dict_container.dataset filepaths = moving_dict_container.filepaths moving_dict_container.set("rtss_modified_moving", False) # Determine if dataset is CT for aditional rescaling is_ct = False if dataset[0].Modality == "CT": is_ct = True if 'WindowWidth' in dataset[0]: if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat): window = int(dataset[0].WindowWidth) elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue): window = int(dataset[0].WindowWidth[1]) else: window = int(400) if 'WindowCenter' in dataset[0]: if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat): level = int(dataset[0].WindowCenter) - window / 2 elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue): level = int(dataset[0].WindowCenter[1]) - window / 2 if is_ct: level += CT_RESCALE_INTERCEPT else: level = int(800) moving_dict_container.set("window", window) moving_dict_container.set("level", level) # Check to see if the imageWindowing.csv file exists if os.path.exists(data_path('imageWindowing.csv')): # If it exists, read data from file into the self.dict_windowing # variable dict_windowing = {} with open(data_path('imageWindowing.csv'), "r") \ as fileInput: next(fileInput) dict_windowing["Normal"] = [window, level] for row in fileInput: # Format: Organ - Scan - Window - Level items = [item for item in row.split(',')] dict_windowing[items[0]] = [int(items[2]), int(items[3])] else: # If csv does not exist, initialize dictionary with default # values dict_windowing = { "Normal": [window, level], "Lung": [1600, -300], "Bone": [1400, 700], "Brain": [160, 950], "Soft Tissue": [400, 800], "Head and Neck": [275, 900] } moving_dict_container.set("dict_windowing_moving", dict_windowing) if not moving_dict_container.has_attribute("scaled"): moving_dict_container.set("scaled", True) pixel_values = convert_raw_data(dataset, False, is_ct) else: pixel_values = convert_raw_data(dataset, True) # Calculate the ratio between x axis and y axis of 3 views pixmap_aspect = {} pixel_spacing = dataset[0].PixelSpacing slice_thickness = dataset[0].SliceThickness pixmap_aspect["axial"] = pixel_spacing[1] / pixel_spacing[0] pixmap_aspect["sagittal"] = pixel_spacing[1] / slice_thickness pixmap_aspect["coronal"] = slice_thickness / pixel_spacing[0] pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \ get_pixmaps(pixel_values, window, level, pixmap_aspect) moving_dict_container.set("pixmaps_axial", pixmaps_axial) moving_dict_container.set("pixmaps_coronal", pixmaps_coronal) moving_dict_container.set("pixmaps_sagittal", pixmaps_sagittal) moving_dict_container.set("pixel_values", pixel_values) moving_dict_container.set("pixmap_aspect", pixmap_aspect) basic_info = get_basic_info(dataset[0]) moving_dict_container.set("basic_info", basic_info) moving_dict_container.set("dict_uid", dict_instance_uid(dataset)) # Set RTSS attributes if moving_dict_container.has_modality("rtss"): moving_dict_container.set("file_rtss", filepaths['rtss']) moving_dict_container.set("dataset_rtss", dataset['rtss']) dicom_tree_rtss = DicomTree(filepaths['rtss']) moving_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) moving_dict_container.set( "list_roi_numbers", ordered_list_rois(moving_dict_container.get("rois"))) moving_dict_container.set("selected_rois", []) moving_dict_container.set("dict_polygons", {}) # Set RTDOSE attributes if moving_dict_container.has_modality("rtdose"): dicom_tree_rtdose = DicomTree(filepaths['rtdose']) moving_dict_container.set("dict_dicom_tree_rtdose", dicom_tree_rtdose.dict) moving_dict_container.set("dose_pixluts", get_dose_pixluts(dataset)) moving_dict_container.set("selected_doses", []) # This will be overwritten if an RTPLAN is present. moving_dict_container.set("rx_dose_in_cgray", 1) # Set RTPLAN attributes if moving_dict_container.has_modality("rtplan"): rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"]) moving_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray) dicom_tree_rtplan = DicomTree(filepaths['rtplan']) moving_dict_container.set("dict_dicom_tree_rtplan", dicom_tree_rtplan.dict)
def create_initial_model(): """ This function initializes all the attributes in the PatientDictContainer model required for the operation of the main window. This should be called before the main window's components are constructed, but after the initial values of the PatientDictContainer instance are set (i.e. dataset and filepaths). """ ############################## # LOAD PATIENT INFORMATION # ############################## patient_dict_container = PatientDictContainer() dataset = patient_dict_container.dataset filepaths = patient_dict_container.filepaths patient_dict_container.set("rtss_modified", False) if ('WindowWidth' in dataset[0]): if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat): window = int(dataset[0].WindowWidth) elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue): window = int(dataset[0].WindowWidth[1]) else: window = int(400) if ('WindowCenter' in dataset[0]): if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat): level = int(dataset[0].WindowCenter) elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue): level = int(dataset[0].WindowCenter[1]) else: level = int(800) patient_dict_container.set("window", window) patient_dict_container.set("level", level) # Check to see if the imageWindowing.csv file exists if os.path.exists(resource_path('data/csv/imageWindowing.csv')): # If it exists, read data from file into the self.dict_windowing variable dict_windowing = {} with open(resource_path('data/csv/imageWindowing.csv'), "r") as fileInput: next(fileInput) dict_windowing["Normal"] = [window, level] for row in fileInput: # Format: Organ - Scan - Window - Level items = [item for item in row.split(',')] dict_windowing[items[0]] = [int(items[2]), int(items[3])] else: # If csv does not exist, initialize dictionary with default values dict_windowing = { "Normal": [window, level], "Lung": [1600, -300], "Bone": [1400, 700], "Brain": [160, 950], "Soft Tissue": [400, 800], "Head and Neck": [275, 900] } patient_dict_container.set("dict_windowing", dict_windowing) pixel_values = convert_raw_data(dataset) pixmaps = get_pixmaps(pixel_values, window, level) patient_dict_container.set("pixmaps", pixmaps) patient_dict_container.set("pixel_values", pixel_values) basic_info = get_basic_info(dataset[0]) patient_dict_container.set("basic_info", basic_info) patient_dict_container.set("dict_uid", dict_instanceUID(dataset)) # Set RTSS attributes if patient_dict_container.has_modality("rtss"): patient_dict_container.set("file_rtss", filepaths['rtss']) patient_dict_container.set("dataset_rtss", dataset['rtss']) dicom_tree_rtss = DicomTree(filepaths['rtss']) patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) patient_dict_container.set( "list_roi_numbers", ordered_list_rois(patient_dict_container.get("rois"))) patient_dict_container.set("selected_rois", []) patient_dict_container.set("dict_polygons", {}) # Set RTDOSE attributes if patient_dict_container.has_modality("rtdose"): dicom_tree_rtdose = DicomTree(filepaths['rtdose']) patient_dict_container.set("dict_dicom_tree_rtdose", dicom_tree_rtdose.dict) patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset)) patient_dict_container.set("selected_doses", []) patient_dict_container.set( "rx_dose_in_cgray", 1) # This will be overwritten if an RTPLAN is present. # Set RTPLAN attributes if patient_dict_container.has_modality("rtplan"): # the TargetPrescriptionDose is type 3 (optional), so it may not be there # However, it is preferable to the sum of the beam doses # DoseReferenceStructureType is type 1 (value is mandatory), # but it can have a value of ORGAN_AT_RISK rather than TARGET # in which case there will *not* be a TargetPrescriptionDose # and even if it is TARGET, that's no guarantee that TargetPrescriptionDose # will be encoded and have a value rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"]) patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray) dicom_tree_rtplan = DicomTree(filepaths['rtplan']) patient_dict_container.set("dict_dicom_tree_rtplan", dicom_tree_rtplan.dict)
def structure_modified(self, changes): """ Executes when a structure is renamed/deleted. Displays indicator that structure has changed. changes is a tuple of (new_dataset, description_of_changes) description_of_changes follows the format {"type_of_change": value_of_change}. Examples: {"rename": ["TOOTH", "TEETH"]} represents that the TOOTH structure has been renamed to TEETH. {"delete": ["TEETH", "MAXILLA"]} represents that the TEETH and MAXILLA structures have been deleted. {"draw": "AORTA"} represents that a new structure AORTA has been drawn. """ new_dataset = changes[0] change_description = changes[1] # If this is the first time the RTSS has been modified, create a modified indicator giving the user the option # to save their new file. if self.patient_dict_container.get("rtss_modified") is False: self.show_modified_indicator() # If this is the first change made to the RTSS file, update the dataset with the new one so that OnkoDICOM # starts working off this dataset rather than the original RTSS file. self.patient_dict_container.set("rtss_modified", True) self.patient_dict_container.set("dataset_rtss", new_dataset) # Refresh ROIs in main page self.patient_dict_container.set("rois", ImageLoading.get_roi_info(new_dataset)) self.rois = self.patient_dict_container.get("rois") contour_data = ImageLoading.get_raw_contour_data(new_dataset) self.patient_dict_container.set("raw_contour", contour_data[0]) self.patient_dict_container.set("num_points", contour_data[1]) pixluts = ImageLoading.get_pixluts(self.patient_dict_container.dataset) self.patient_dict_container.set("pixluts", pixluts) self.patient_dict_container.set( "list_roi_numbers", ordered_list_rois(self.patient_dict_container.get("rois"))) self.patient_dict_container.set("selected_rois", []) self.patient_dict_container.set("dict_polygons", {}) if "draw" in change_description: dicom_tree_rtss = DicomTree(None) dicom_tree_rtss.dataset = new_dataset dicom_tree_rtss.dict = dicom_tree_rtss.dataset_to_dict( dicom_tree_rtss.dataset) self.patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) self.color_dict = self.init_color_roi() self.patient_dict_container.set("roi_color_dict", self.color_dict) if self.patient_dict_container.has_attribute("raw_dvh"): # DVH will be outdated once changes to it are made, and recalculation will be required. self.patient_dict_container.set("dvh_outdated", True) if self.patient_dict_container.has_modality("raw_dvh"): # Rename structures in DVH list if "rename" in changes[1]: new_raw_dvh = self.patient_dict_container.get("raw_dvh") for key, dvh in new_raw_dvh.items(): if dvh.name == change_description["rename"][0]: dvh.name = change_description["rename"][1] break self.patient_dict_container.set("raw_dvh", new_raw_dvh) # Remove structures from DVH list - the only visible effect of this section is the exported DVH csv if "delete" in changes[1]: list_of_deleted = [] new_raw_dvh = self.patient_dict_container.get("raw_dvh") for key, dvh in new_raw_dvh.items(): if dvh.name in change_description["delete"]: list_of_deleted.append(key) for key in list_of_deleted: new_raw_dvh.pop(key) self.patient_dict_container.set("raw_dvh", new_raw_dvh) # Refresh ROIs in DVH tab and DICOM View self.request_update_structures.emit() # Refresh structure tab self.update_content()
def create_initial_model_batch(): """ This function initializes all the attributes in the PatientDictContainer required for the operation of batch processing. It is a modified version of create_initial_model. This function only sets RTSS values in the PatientDictContainer if an RTSS exists. If one does not exist it will only be created if needed, whereas the original create_initial_model assumes that one is always created. This function also does not set SR attributes in the PatientDictContainer, as SRs are only needed for SR2CSV functions, which do not require the use of the PatientDictContainer. """ ############################## # LOAD PATIENT INFORMATION # ############################## patient_dict_container = PatientDictContainer() dataset = patient_dict_container.dataset filepaths = patient_dict_container.filepaths patient_dict_container.set("rtss_modified", False) if 'WindowWidth' in dataset[0]: if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat): window = int(dataset[0].WindowWidth) elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue): window = int(dataset[0].WindowWidth[1]) else: window = int(400) if 'WindowCenter' in dataset[0]: if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat): level = int(dataset[0].WindowCenter) elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue): level = int(dataset[0].WindowCenter[1]) else: level = int(800) patient_dict_container.set("window", window) patient_dict_container.set("level", level) # Check to see if the imageWindowing.csv file exists if os.path.exists(data_path('imageWindowing.csv')): # If it exists, read data from file into the self.dict_windowing # variable dict_windowing = {} with open(data_path('imageWindowing.csv'), "r") \ as fileInput: next(fileInput) dict_windowing["Normal"] = [window, level] for row in fileInput: # Format: Organ - Scan - Window - Level items = [item for item in row.split(',')] dict_windowing[items[0]] = [int(items[2]), int(items[3])] else: # If csv does not exist, initialize dictionary with default values dict_windowing = { "Normal": [window, level], "Lung": [1600, -300], "Bone": [1400, 700], "Brain": [160, 950], "Soft Tissue": [400, 800], "Head and Neck": [275, 900] } patient_dict_container.set("dict_windowing", dict_windowing) pixel_values = convert_raw_data(dataset) # Calculate the ratio between x axis and y axis of 3 views pixmap_aspect = {} pixel_spacing = dataset[0].PixelSpacing slice_thickness = dataset[0].SliceThickness pixmap_aspect["axial"] = pixel_spacing[1] / pixel_spacing[0] pixmap_aspect["sagittal"] = pixel_spacing[1] / slice_thickness pixmap_aspect["coronal"] = slice_thickness / pixel_spacing[0] pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \ get_pixmaps(pixel_values, window, level, pixmap_aspect) patient_dict_container.set("pixmaps_axial", pixmaps_axial) patient_dict_container.set("pixmaps_coronal", pixmaps_coronal) patient_dict_container.set("pixmaps_sagittal", pixmaps_sagittal) patient_dict_container.set("pixel_values", pixel_values) patient_dict_container.set("pixmap_aspect", pixmap_aspect) basic_info = get_basic_info(dataset[0]) patient_dict_container.set("basic_info", basic_info) patient_dict_container.set("dict_uid", dict_instance_uid(dataset)) # Set RTSS attributes if patient_dict_container.has_modality("rtss"): patient_dict_container.set("file_rtss", filepaths['rtss']) patient_dict_container.set("dataset_rtss", dataset['rtss']) dict_raw_contour_data, dict_numpoints = \ ImageLoading.get_raw_contour_data(dataset['rtss']) patient_dict_container.set("raw_contour", dict_raw_contour_data) dicom_tree_rtss = DicomTree(filepaths['rtss']) patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) patient_dict_container.set( "list_roi_numbers", ordered_list_rois(patient_dict_container.get("rois"))) patient_dict_container.set("selected_rois", []) patient_dict_container.set("dict_polygons_axial", {}) patient_dict_container.set("dict_polygons_sagittal", {}) patient_dict_container.set("dict_polygons_coronal", {}) # Set RTDOSE attributes if patient_dict_container.has_modality("rtdose"): dicom_tree_rtdose = DicomTree(filepaths['rtdose']) patient_dict_container.set("dict_dicom_tree_rtdose", dicom_tree_rtdose.dict) patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset)) patient_dict_container.set("selected_doses", []) # overwritten if RTPLAN is present. patient_dict_container.set("rx_dose_in_cgray", 1) # Set RTPLAN attributes if patient_dict_container.has_modality("rtplan"): # the TargetPrescriptionDose is type 3 (optional), so it may not be # there However, it is preferable to the sum of the beam doses # DoseReferenceStructureType is type 1 (value is mandatory), but it # can have a value of ORGAN_AT_RISK rather than TARGET in which case # there will *not* be a TargetPrescriptionDose and even if it is # TARGET, that's no guarantee that TargetPrescriptionDose will be # encoded and have a value rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"]) patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray) dicom_tree_rtplan = DicomTree(filepaths['rtplan']) patient_dict_container.set("dict_dicom_tree_rtplan", dicom_tree_rtplan.dict)
def create_initial_model(): """ This function initializes all the attributes in the PatientDictContainer model required for the operation of the main window. This should be called before the main window's components are constructed, but after the initial values of the PatientDictContainer instance are set (i.e. dataset and filepaths). """ ############################## # LOAD PATIENT INFORMATION # ############################## patient_dict_container = PatientDictContainer() dataset = patient_dict_container.dataset filepaths = patient_dict_container.filepaths patient_dict_container.set("rtss_modified", False) # Determine if dataset is CT for aditional rescaling is_ct = False if dataset[0].Modality == "CT": is_ct = True if 'WindowWidth' in dataset[0]: if isinstance(dataset[0].WindowWidth, pydicom.valuerep.DSfloat): window = int(dataset[0].WindowWidth) elif isinstance(dataset[0].WindowWidth, pydicom.multival.MultiValue): window = int(dataset[0].WindowWidth[1]) else: window = int(400) if 'WindowCenter' in dataset[0]: if isinstance(dataset[0].WindowCenter, pydicom.valuerep.DSfloat): level = int(dataset[0].WindowCenter) - window / 2 elif isinstance(dataset[0].WindowCenter, pydicom.multival.MultiValue): level = int(dataset[0].WindowCenter[1]) - window / 2 if is_ct: level += CT_RESCALE_INTERCEPT else: level = int(800) patient_dict_container.set("window", window) patient_dict_container.set("level", level) # Check to see if the imageWindowing.csv file exists if os.path.exists(data_path('imageWindowing.csv')): # If it exists, read data from file into the self.dict_windowing # variable dict_windowing = {} with open(data_path('imageWindowing.csv'), "r") \ as fileInput: next(fileInput) dict_windowing["Normal"] = [window, level] for row in fileInput: # Format: Organ - Scan - Window - Level items = [item for item in row.split(',')] dict_windowing[items[0]] = [int(items[2]), int(items[3])] else: # If csv does not exist, initialize dictionary with default values dict_windowing = { "Normal": [window, level], "Lung": [1600, -300], "Bone": [1400, 700], "Brain": [160, 950], "Soft Tissue": [400, 800], "Head and Neck": [275, 900] } patient_dict_container.set("dict_windowing", dict_windowing) if not patient_dict_container.has_attribute("scaled"): patient_dict_container.set("scaled", True) pixel_values = convert_raw_data(dataset, False, is_ct) else: pixel_values = convert_raw_data(dataset, True) # Calculate the ratio between x axis and y axis of 3 views pixmap_aspect = {} pixel_spacing = dataset[0].PixelSpacing slice_thickness = dataset[0].SliceThickness pixmap_aspect["axial"] = pixel_spacing[1] / pixel_spacing[0] pixmap_aspect["sagittal"] = pixel_spacing[1] / slice_thickness pixmap_aspect["coronal"] = slice_thickness / pixel_spacing[0] pixmaps_axial, pixmaps_coronal, pixmaps_sagittal = \ get_pixmaps(pixel_values, window, level, pixmap_aspect) patient_dict_container.set("pixmaps_axial", pixmaps_axial) patient_dict_container.set("pixmaps_coronal", pixmaps_coronal) patient_dict_container.set("pixmaps_sagittal", pixmaps_sagittal) patient_dict_container.set("pixel_values", pixel_values) patient_dict_container.set("pixmap_aspect", pixmap_aspect) basic_info = get_basic_info(dataset[0]) patient_dict_container.set("basic_info", basic_info) patient_dict_container.set("dict_uid", dict_instance_uid(dataset)) # Set RTSS attributes patient_dict_container.set("file_rtss", filepaths['rtss']) patient_dict_container.set("dataset_rtss", dataset['rtss']) dict_raw_contour_data, dict_numpoints = \ ImageLoading.get_raw_contour_data(dataset['rtss']) patient_dict_container.set("raw_contour", dict_raw_contour_data) # dict_dicom_tree_rtss will be set in advance if the program # generates a new rtss through the execution of # ROI.create_initial_rtss_from_ct(...) if patient_dict_container.get("dict_dicom_tree_rtss") is None: dicom_tree_rtss = DicomTree(filepaths['rtss']) patient_dict_container.set("dict_dicom_tree_rtss", dicom_tree_rtss.dict) patient_dict_container.set( "list_roi_numbers", ordered_list_rois(patient_dict_container.get("rois"))) patient_dict_container.set("selected_rois", []) patient_dict_container.set("dict_polygons_axial", {}) patient_dict_container.set("dict_polygons_sagittal", {}) patient_dict_container.set("dict_polygons_coronal", {}) # Set RTDOSE attributes if patient_dict_container.has_modality("rtdose"): dicom_tree_rtdose = DicomTree(filepaths['rtdose']) patient_dict_container.set("dict_dicom_tree_rtdose", dicom_tree_rtdose.dict) patient_dict_container.set("dose_pixluts", get_dose_pixluts(dataset)) patient_dict_container.set("selected_doses", []) # overwritten if RTPLAN is present. patient_dict_container.set("rx_dose_in_cgray", 1) # Set RTPLAN attributes if patient_dict_container.has_modality("rtplan"): # the TargetPrescriptionDose is type 3 (optional), so it may not be # there However, it is preferable to the sum of the beam doses # DoseReferenceStructureType is type 1 (value is mandatory), but it # can have a value of ORGAN_AT_RISK rather than TARGET in which case # there will *not* be a TargetPrescriptionDose and even if it is # TARGET, that's no guarantee that TargetPrescriptionDose will be # encoded and have a value rx_dose_in_cgray = calculate_rx_dose_in_cgray(dataset["rtplan"]) patient_dict_container.set("rx_dose_in_cgray", rx_dose_in_cgray) dicom_tree_rtplan = DicomTree(filepaths['rtplan']) patient_dict_container.set("dict_dicom_tree_rtplan", dicom_tree_rtplan.dict) # Set SR attributes if patient_dict_container.has_modality("sr-cd"): dicom_tree_sr_clinical_data = DicomTree(filepaths['sr-cd']) patient_dict_container.set("dict_dicom_tree_sr_cd", dicom_tree_sr_clinical_data.dict) if patient_dict_container.has_modality("sr-rad"): dicom_tree_sr_pyrad = DicomTree(filepaths['sr-rad']) patient_dict_container.set("dict_dicom_tree_sr_pyrad", dicom_tree_sr_pyrad.dict)