示例#1
0
 def get_by_ind_roadway(self, ind: CurvePt.CurveIndex, roadway):
     # print(ind.i, len(self.curve))
     if ind.i == -1:
         pt_lo = prev_lane_point(self, roadway)
         pt_hi = self.curve[0]
         s_gap = VecE2.norm(VecE2.VecE2(pt_hi.pos - pt_lo.pos))
         pt_lo = CurvePt.CurvePt(pt_lo.pos, -s_gap, pt_lo.k, pt_lo.kd)
         return CurvePt.lerp(pt_lo, pt_hi, ind.t)
     elif ind.i < len(self.curve) - 1:
         return CurvePt.get_curve_list_by_index(self.curve, ind)
     else:
         pt_hi = next_lane_point(self, roadway)
         pt_lo = self.curve[-1]
         s_gap = VecE2.norm(VecE2.VecE2(pt_hi.pos - pt_lo.pos))
         pt_hi = CurvePt.CurvePt(pt_hi.pos, pt_lo.s + s_gap, pt_hi.k,
                                 pt_hi.kd)
         return CurvePt.lerp(pt_lo, pt_hi, ind.t)
示例#2
0
def proj(posG: VecSE2.VecSE2, curve: list):
    """
        Vec.proj(posG::VecSE2, curve::list of CurvePt)
    Return a CurveProjection obtained by projecting posG onto the curve
    """
    ind = index_closest_to_point(curve, posG)
    # if ind <= len(curve):
    #     print("project: ")
    #     print(ind, len(curve))
    curveind = CurveIndex(-1, 0)
    footpoint = VecSE2.VecSE2(0, 0, 0)
    if 0 < ind < len(curve) - 1:
        t_lo = get_lerp_time_2(curve[ind - 1], curve[ind], posG)
        t_hi = get_lerp_time_2(curve[ind], curve[ind + 1], posG)

        p_lo = VecSE2.lerp(curve[ind - 1].pos, curve[ind].pos, t_lo)
        p_hi = VecSE2.lerp(curve[ind].pos, curve[ind + 1].pos, t_hi)

        vec_lo = p_lo - posG
        vec_hi = p_hi - posG

        d_lo = VecE2.norm(VecE2.VecE2(vec_lo.x, vec_lo.y))
        d_hi = VecE2.norm(VecE2.VecE2(vec_hi.x, vec_hi.y))
        if d_lo < d_hi:
            footpoint = p_lo
            curveind = CurveIndex(ind - 1, t_lo)
        else:
            footpoint = p_hi
            curveind = CurveIndex(ind, t_hi)
    elif ind == 0:
        t = get_lerp_time_2(curve[0], curve[1], posG)
        footpoint = VecSE2.lerp(curve[0].pos, curve[1].pos, t)
        curveind = CurveIndex(ind, t)
    else:  # ind == length(curve)
        t = get_lerp_time_2(curve[-2], curve[-1], posG)
        footpoint = VecSE2.lerp(curve[-2].pos, curve[-1].pos, t)
        curveind = CurveIndex(ind - 1, t)

    return get_curve_projection(posG, footpoint, curveind)
示例#3
0
文件: Get.py 项目: qianjin5/Autoenv
def get_RoadEdgeDist_Right(rec: SceneRecord,
                           roadway: Roadway,
                           vehicle_index: int,
                           pastframe: int = 0):
    veh = rec[pastframe][vehicle_index]
    offset = veh.state.posF.t
    footpoint = veh.get_footpoint
    seg = roadway.get_by_id(veh.state.posF.roadind.tag.segment)
    lane = seg.lanes[0]
    roadproj = proj_1(footpoint, lane, roadway)
    curvept = roadway.get_by_roadindex(
        RoadIndex(roadproj.curveproj.ind, roadproj.tag))
    lane = roadway.get_by_tag(roadproj.tag)
    vec = curvept.pos - footpoint
    return FeatureState.FeatureValue(lane.width / 2 +
                                     VecE2.norm(VecE2.VecE2(vec.x, vec.y)) +
                                     offset)
示例#4
0
def observe(lidar: LidarSensor, scene: Frame, roadway: Roadway, vehicle_index: int):
    state_ego = scene[vehicle_index].state
    egoid = scene[vehicle_index].id
    ego_vel = VecE2.polar(state_ego.v, state_ego.posG.theta)

    in_range_ids = set()

    for i in range(scene.n):
        veh = scene[i]
        if veh.id != egoid:
            a = state_ego.posG - veh.state.posG
            distance = VecE2.norm(VecE2.VecE2(a.x, a.y))
            # account for the length and width of the vehicle by considering
            # the worst case where their maximum radius is aligned
            distance = distance - math.hypot(veh.definition.length_ / 2., veh.definition.width_ / 2.)
            if distance < lidar.max_range:
                in_range_ids.add(veh.id)

                # compute range and range_rate for each angle
    for (i, angle) in enumerate(lidar.angles):
        ray_angle = state_ego.posG.theta + angle
        ray_vec = VecE2.polar(1.0, ray_angle)
        ray = VecSE2.VecSE2(state_ego.posG.x, state_ego.posG.y, ray_angle)

        range_ = lidar.max_range
        range_rate = 0.0
        for j in range(scene.n):
            veh = scene[j]
            # only consider the set of potentially in range vehicles
            if veh.id in in_range_ids:
                lidar.poly.set(to_oriented_bounding_box_2(lidar.poly, veh))

                range2 = get_collision_time(ray, lidar.poly, 1.0)  # TODO: continue finish here
                if range2 and range2 < range_:
                    range_ = range2
                    relative_speed = VecE2.polar(veh.state.v, veh.state.posG.theta) - ego_vel
                    range_rate = VecE2.proj_(relative_speed, ray_vec)
        lidar.ranges[i] = range_
        lidar.range_rates[i] = range_rate

    return lidar
示例#5
0
def get_neighbor_fore_along_lane_1(scene: Frame,
                                   roadway: Roadway,
                                   tag_start: LaneTag,
                                   s_base: float,
                                   targetpoint_primary: str,
                                   targetpoint_valid: str,
                                   max_distance_fore: float = 250.0,
                                   index_to_ignore: int = -1):

    # targetpoint_primary: the reference point whose distance we want to minimize
    # targetpoint_valid: the reference point, which if distance to is positive, we include the vehicle
    best_ind = None
    best_dist = max_distance_fore
    tag_target = tag_start

    dist_searched = 0.0
    while dist_searched < max_distance_fore:
        lane = roadway.get_by_tag(tag_target)
        for i in range(scene.n):
            veh = scene[i]
            if i != index_to_ignore:
                s_adjust = None
                if veh.state.posF.roadind.tag == tag_target:
                    s_adjust = 0.0
                elif is_between_segments_hi(veh.state.posF.roadind.ind, lane.curve) and \
                        is_in_entrances(roadway.get_by_tag(tag_target), veh.state.posF.roadind.tag):
                    distance_between_lanes = VecE2.norm(
                        VecE2.VecE2(
                            roadway.get_by_tag(tag_target).curve[0].pos -
                            roadway.get_by_tag(
                                veh.state.posF.roadind.tag).curve[-1].pos))
                    s_adjust = -(roadway.get_by_tag(
                        veh.state.posF.roadind.tag).curve[-1].s +
                                 distance_between_lanes)
                elif is_between_segments_lo(veh.state.posF.roadind.ind) and \
                        is_in_exits(roadway.get_by_tag(tag_target), veh.state.posF.roadind.tag):
                    distance_between_lanes = VecE2.norm(
                        VecE2.VecE2(
                            roadway.get_by_tag(tag_target).curve[-1].pos -
                            roadway.get_by_tag(
                                veh.state.posF.roadind.tag).curve[0].pos))
                    s_adjust = roadway.get_by_tag(
                        tag_target).curve[-1].s + distance_between_lanes
                if s_adjust is not None:
                    s_valid = veh.state.posF.s + veh.get_targetpoint_delta(
                        targetpoint_valid) + s_adjust
                    dist_valid = s_valid - s_base + dist_searched
                    if dist_valid >= 0.0:
                        s_primary = veh.state.posF.s + veh.get_targetpoint_delta(
                            targetpoint_primary) + s_adjust
                        dist = s_primary - s_base + dist_searched
                        if dist < best_dist:
                            best_dist = dist
                            best_ind = i

        if best_ind is not None:
            break
        if (not has_next(lane)) or (tag_target == tag_start
                                    and dist_searched != 0.0):
            # exit after visiting this lane a 2nd time
            break
        dist_searched += (lane.curve[-1].s - s_base)
        s_base = -VecE2.norm(
            VecE2.VecE2(lane.curve[-1].pos -
                        next_lane_point(lane, roadway).pos))
        # negative distance between lanes
        tag_target = next_lane(lane, roadway).tag

    return NeighborLongitudinalResult(best_ind, best_dist)