def __init__(self, UnitigGraph, breakpoint_penalty=1, data_penalty=1, trash_penalty=1, expected_value_penalty=1, infer_c=None, infer_d=None, default_ploidy=2): SequenceGraphLpProblem.__init__(self) self.graph = UnitigGraph self.breakpoint_penalty = breakpoint_penalty self.data_penalty = data_penalty self.trash_penalty = trash_penalty self.expected_value_penalty = expected_value_penalty self.expected_ploidy = {} for para in UnitigGraph.paralogs.iterkeys(): if para == "Notch2NL-C" and infer_c is not None: self.expected_ploidy[para] = infer_c elif para == "Notch2NL-D" and infer_d is not None: self.expected_ploidy[para] = infer_d else: self.expected_ploidy[para] = default_ploidy # list of Block objects self.blocks = [] # maps Block objects to the paralogs they contain self.block_map = {x: [] for x in UnitigGraph.paralogs.iterkeys()} self._build_blocks(UnitigGraph, infer_c, infer_d)
def __init__(self, Avals, Bvals, windowSize, stepSize, breakpoint_penalty, data_penalty, deletion_penalty): aStart = 146152644-3000 bStart = 148603586-3000 aStop = 146233816+4000 bStop = 148684557+4000 SequenceGraphLpProblem.__init__(self) self.windows = [] for aPos, bPos in izip(xrange(aStart, aStop - windowSize, stepSize), xrange(bStart, bStop - windowSize, stepSize)): A = [y for x, y in Avals if x >= aPos and y < aPos] B = [y for x, y in Bvals if x >= bPos and y < bPos] self.windows.append([aPos, bPos, Window(A, B)]) self.build_model(breakpoint_penalty, data_penalty, deletion_penalty)
def __init__(self, Avals, Bvals, windowSize, stepSize, breakpoint_penalty, data_penalty, deletion_penalty): aStart = 146152644 - 3000 bStart = 148603586 - 3000 aStop = 146233816 + 4000 bStop = 148684557 + 4000 SequenceGraphLpProblem.__init__(self) self.windows = [] for aPos, bPos in izip(xrange(aStart, aStop - windowSize, stepSize), xrange(bStart, bStop - windowSize, stepSize)): A = [y for x, y in Avals if x >= aPos and y < aPos] B = [y for x, y in Bvals if x >= bPos and y < bPos] self.windows.append([aPos, bPos, Window(A, B)]) self.build_model(breakpoint_penalty, data_penalty, deletion_penalty)
def __init__(self, deBruijnGraph, normalizing, breakpointPenalty=15, dataPenalty=1, tightness=1, inferC=None, inferD=None, defaultPloidy=2.0): SequenceGraphLpProblem.__init__(self) self.blocks = [] self.block_map = {x[0]: [] for x in deBruijnGraph.paralogs} self.offset_map = {x[0]: int(x[1]) for x in deBruijnGraph.paralogs} self.normalizing = normalizing self.breakpointPenalty = breakpointPenalty self.dataPenalty = dataPenalty self.tightness = tightness self.inferC = inferC self.inferD = inferD self.defaultPloidy = defaultPloidy self.buildBlocks(deBruijnGraph) self.G = deBruijnGraph