def generatePlotTTA(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)
    const, unconst = tee(results)

    color = colors[exp.agent]
    label = rename(exp.agent)

    if 'ReghTDC' in exp.agent:
        const = whereParameterEquals(const, 'ratio', 1)
        const = whereParameterEquals(const, 'reg_h', 1)

    elif 'TDRCC' in exp.agent:
        const = whereParameterEquals(const, 'ratio', 1)
        # const = whereParameterEquals(const, 'reg_h', 0.8)
        const = whereParameterGreaterEq(const, 'reg_h', 0.01)

    elif 'TDC' in exp.agent:
        const = whereParameterGreaterEq(const, 'ratio', 1)

    if show_unconst:
        b = plotSensitivity(unconst, param, ax, stderr=stderr, color=color, label=label + '_unc', bestBy=bestBy, dashed=True)
        bounds.append(b)

    b = plotSensitivity(const, param, ax, stderr=stderr, color=color, label=label, bestBy=bestBy)
    bounds.append(b)
示例#2
0
def generatePlotTTA(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)
        const, unconst = tee(results)

        color = colors[exp.agent]
        label = exp.agent

        if error == 'rmsve':
            rmspbe = loadResults(exp, 'rmspbe_summary.npy')
            rmspbe_unconst, rmspbe_const = tee(rmspbe)

            rmspbe_const = whereParameterGreaterEq(rmspbe_const, 'ratio', 1)

            best_rmspbe_unconst = getBest(rmspbe_unconst)
            best_rmspbe_const = getBest(rmspbe_const)

            best_unconst = find(unconst, best_rmspbe_unconst)
            best_const = find(const, best_rmspbe_const)

        elif error == 'rmspbe':
            const = whereParameterGreaterEq(const, 'ratio', 1)
            best_unconst = getBest(unconst)
            best_const = getBest(const)


        b = plotBest(best_unconst, ax, label=label + '_unc', color=color, dashed=True)
        bounds.append(b)

        b = plotBest(best_const, ax, label=label, color=color, dashed=False)
        bounds.append(b)
示例#3
0
def generatePlotTTA(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)
    const, unconst = tee(results)

    color = colors[exp.agent]
    label = exp.agent

    const = whereParameterGreaterEq(const, 'ratio', 1)
    if 'ReghTDC' in label:
        const = whereParameterEquals(const, 'reg_h', 0.8)

    best_const = getBest(const, bestBy=bestBy)
    best_unconst = getBest(unconst, bestBy=bestBy)

    if show_unconst and best_const != best_unconst:
        b = plotBest(best_unconst,
                     ax,
                     window=window,
                     smoothing=smoothing,
                     label=label + '_unc',
                     color=color,
                     alpha=0.2,
                     dashed=True)
        bounds.append(b)

    b = plotBest(best_const,
                 ax,
                 window=window,
                 smoothing=smoothing,
                 label=label,
                 color=color,
                 alpha=0.2,
                 dashed=False)
    bounds.append(b)
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        color = colors[exp.agent]
        label = exp.agent

        dashed = False
        if 'TDC' in label:
            dashed = True

        results = whereParameterGreaterEq(results, 'ratio', 1)

        b = plot(results, ax, label=label, color=color, dashed=dashed, bestBy=bestBy)
        bounds.append(b)
def generatePlot(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        color = colors[exp.agent]
        label = exp.agent

        results = whereParameterEquals(results, 'batch_size', 4)
        results = whereParameterLesserEq(results, 'ratio', 8)
        results = whereParameterLesserEq(results, 'alpha', 0.5)
        results = where(results, lambda r: r.params.get('ratio', 1) * r.params['alpha'] <= 1)

        if 'ReghTDC' in label:
            results = whereParameterEquals(results, 'reg_h', 1)
            results = whereParameterEquals(results, 'ratio', 1)

        elif 'TDRCC' in label:
            results = whereParameterEquals(results, 'reg_h', 0.8)
            results = whereParameterEquals(results, 'ratio', 1)

        elif 'TDC' in label:
            results = whereParameterGreaterEq(results, 'ratio', 1)

        left, right = tee(results)

        best_line = getBest(right).mean()
        best = np.mean(best_line)

        for result in left:
            # print(label, result.params)
            shade = 0.12
            line = result.mean()
            if np.mean(line) == best:
                shade = 1

            plotBest(result, ax, label=label, color=color, alphaMain=shade, dashed=False)

        bounds.append(best_line[0])
示例#6
0
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    ax.set_xscale("log", basex=2)
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        agent = exp.agent
        color = colors[agent]
        label = agent

        if exp.agent == 'ReghTDC':
            results = whereParameterGreaterEq(results, 'ratio', 1.0)

        # reducer='best' chooses the best value of other parameters *per value of 'replay'*
        # reducer='slice' first chooses the best parameter setting, then sweeps over 'replay' with other parameters fixed
        b = plotSensitivity(results,
                            'replay',
                            ax,
                            reducer='best',
                            color=color,
                            label=label,
                            bestBy=bestBy)
        bounds.append(b)
示例#7
0
if __name__ == "__main__":
    table = np.zeros((len(algorithms), len(problems), 2))

    for i, alg in enumerate(algorithms):
        for j, problem in enumerate(problems):
            exp_path = f'experiments/stepsizes/{problem}/{alg}/{alg}{stepsize}.json'
            try:
                exp = loadExperiment(exp_path)
            except:
                continue

            results = loadResults(exp, errorfile)
            if alg == 'td' or alg == 'vtrace':
                const = results
            else:
                const = whereParameterGreaterEq(results, 'ratio', 1)
                const = whereParameterEquals(const, 'reg_h', 0.8)

            best = getBest(const)
            metric = np.mean

            # best = getBestEnd(const)
            # metric = lambda m: np.mean(m[-(int(len(m))):])

            mean = metric(best.mean())
            stderr = metric(best.stderr())

            table[i, j] = [mean, stderr]

    htd_idx = indexOf(algorithms, 'htd')
    vtrace_idx = indexOf(algorithms, 'vtrace')
示例#8
0
def generatePlot(exp_paths):
    f, axes = plt.subplots(2, 2)

    # get LSTD solution
    path = up(up(first(exp_paths))) + '/lstd.json'
    exp = loadExperiment(path)
    LSTD_rmsve_results = loadResults(exp, 'errors_summary.npy')
    LSTD_rmspbe_results = loadResults(exp, 'rmspbe_summary.npy')

    LSTD_rmsve = metric(LSTD_rmsve_results)
    LSTD_rmspbe = metric(LSTD_rmspbe_results)

    rmspbe_bounds = []
    rmsve_bounds = []

    bounds = plotBest(LSTD_rmspbe,
                      axes[0, 0],
                      color=colors['LSTD'],
                      label='LSTD',
                      alphaMain=0.5)
    rmspbe_bounds.append(bounds)

    bounds = plotBest(LSTD_rmspbe,
                      axes[0, 1],
                      color=colors['LSTD'],
                      label='LSTD',
                      alphaMain=0.5)
    rmspbe_bounds.append(bounds)

    bounds = plotBest(LSTD_rmsve,
                      axes[1, 0],
                      color=colors['LSTD'],
                      label='LSTD',
                      alphaMain=0.5)
    rmsve_bounds.append(bounds)

    bounds = plotBest(LSTD_rmsve,
                      axes[1, 1],
                      color=colors['LSTD'],
                      label='LSTD',
                      alphaMain=0.5)
    rmsve_bounds.append(bounds)

    # RMSPBE plots
    ax = axes[0, 0]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'rmspbe_summary.npy')
        const, unconst = tee(results)

        const = whereParameterGreaterEq(const, 'ratio', 1)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent.replace('adagrad', '')

        if not (exp.agent in ['TDadagrad', 'TDschedule', 'TD', 'TDamsgrad']
                or use_ideal_h):
            if UNCONSTRAINED:
                bounds = plot(unconst,
                              ax,
                              label=label + '_unc',
                              color=color,
                              dashed=True,
                              bestBy=bestBy)
                rmspbe_bounds.append(bounds)
            bounds = plot(const,
                          ax,
                          label=label,
                          color=color,
                          dashed=False,
                          bestBy=bestBy)
            rmspbe_bounds.append(bounds)
        else:
            bounds = plot(unconst,
                          ax,
                          label=label,
                          color=color,
                          dashed=False,
                          bestBy=bestBy)
            rmspbe_bounds.append(bounds)

        ax.set_ylabel("MSPBE")
        ax.set_title("MSPBE")

    ax = axes[0, 1]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'rmspbe_summary.npy')
        const, unconst = tee(rmsve)
        const_res, unconst_res = tee(results)

        const = whereParameterGreaterEq(const, 'ratio', 1)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent.replace('adagrad', '')

        if not (exp.agent in ['TDadagrad', 'TDschedule', 'TD', 'TDamsgrad']
                or use_ideal_h):
            best = metric(const)
            best_unc = metric(unconst)
            best_rmspbe = find(const_res, best)
            best_rmspbe_unc = find(unconst_res, best_unc)

            bounds = plotBest(best_rmspbe,
                              ax,
                              label=label,
                              color=color,
                              dashed=False)
            rmspbe_bounds.append(bounds)

            if UNCONSTRAINED:
                bounds = plotBest(best_rmspbe_unc,
                                  ax,
                                  label=label + '_unc',
                                  color=color,
                                  dashed=True)
                rmspbe_bounds.append(bounds)
        else:
            best = metric(unconst)
            best_rmspbe = find(unconst_res, best)

            bounds = plotBest(best_rmspbe,
                              ax,
                              label=label,
                              color=color,
                              dashed=False)
            rmspbe_bounds.append(bounds)

        ax.set_title("MSVE")

    # RMSVE plots
    ax = axes[1, 0]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')
        const, unconst = tee(rmspbe)
        const_res, unconst_res = tee(rmsve)

        const = whereParameterGreaterEq(const, 'ratio', 1)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent.replace('adagrad', '')

        if not (exp.agent in ['TDadagrad', 'TDschedule', 'TD', 'TDamsgrad']
                or use_ideal_h):
            # best PBE using AUC
            best = metric(const)
            best_unc = metric(unconst)
            best_rmsve = find(const_res, best)
            best_rmsve_unc = find(unconst_res, best_unc)

            print('rmsve_over_rmspbe')
            print(label, best_rmsve.params)
            print(label, best_rmsve_unc.params)

            bounds = plotBest(best_rmsve,
                              ax,
                              label=label,
                              color=color,
                              dashed=False)
            rmsve_bounds.append(bounds)

            if UNCONSTRAINED:
                bounds = plotBest(best_rmsve_unc,
                                  ax,
                                  label=label + '_unc',
                                  color=color,
                                  dashed=True)
                rmsve_bounds.append(bounds)

        else:
            best = metric(unconst)
            best_rmsve = find(unconst_res, best)
            bounds = plotBest(best_rmsve,
                              ax,
                              label=label,
                              color=color,
                              dashed=False)
            rmsve_bounds.append(bounds)

        ax.set_ylabel("MSVE")

    ax = axes[1, 1]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)
        const, unconst = tee(results)

        const = whereParameterGreaterEq(const, 'ratio', 1)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent.replace('adagrad', '')

        if not (exp.agent in ['TDadagrad', 'TDschedule', 'TD', 'TDamsgrad']
                or use_ideal_h):
            bounds = plot(const,
                          ax,
                          label=label,
                          color=color,
                          dashed=False,
                          bestBy=bestBy)
            rmsve_bounds.append(bounds)

            if UNCONSTRAINED:
                bounds = plot(unconst,
                              ax,
                              label=label + '_unc',
                              color=color,
                              dashed=True,
                              bestBy=bestBy)
                rmsve_bounds.append(bounds)

        else:
            bounds = plot(unconst,
                          ax,
                          label=label,
                          color=color,
                          dashed=False,
                          bestBy=bestBy)
            rmsve_bounds.append(bounds)

    # rmspbe
    rmspbe_lower = min(map(lambda x: x[0], rmspbe_bounds)) * 0.9
    rmspbe_upper = max(map(lambda x: x[1], rmspbe_bounds)) * 1.05

    if rmspbe_lower < 0.01:
        rmspbe_lower = -0.01

    axes[0, 0].set_ylim([rmspbe_lower, rmspbe_upper])
    axes[0, 1].set_ylim([rmspbe_lower, rmspbe_upper])

    # rmsve
    rmsve_lower = min(map(lambda x: x[0], rmsve_bounds)) * 0.9
    rmsve_upper = max(map(lambda x: x[1], rmsve_bounds)) * 1.05

    if rmsve_lower < 0.01:
        rmsve_lower = -0.01

    axes[1, 0].set_ylim([0, 20])
    axes[1, 1].set_ylim([0, 20])
示例#9
0
    for i, alg in enumerate(algorithms):
        for j, problem in enumerate(problems):
            exp_path = f'experiments/icml_2020/{problem}/{alg}/{alg}{stepsize}.json'
            try:
                exp = loadExperiment(exp_path)
            except:
                continue

            results = loadResults(exp, errorfile)

            if alg == 'regh_tdc':
                results = whereParameterEquals(results, 'ratio', 1)
                results = whereParameterEquals(results, 'reg_h', 0.8)

            if alg == 'tdc':
                results = whereParameterGreaterEq(results, 'ratio', 1)

            if alg == 'tdrcc':
                results = whereParameterGreaterEq(results, 'reg_h', 0.1)

            best = getBest(results)
            metric = np.mean

            # best = getBestEnd(results)
            # metric = lambda m: np.mean(m[-(int(len(m))):])

            mean = metric(best.mean())
            stderr = metric(best.stderr())
            print(alg, problem, mean, best.params)

            table[i, j] = [mean, stderr]