conf = Conf(n_input=[n_pc_points, 3], loss=ae_loss, training_epochs=train_params['training_epochs'], batch_size=train_params['batch_size'], denoising=train_params['denoising'], learning_rate=train_params['learning_rate'], train_dir=train_dir, loss_display_step=train_params['loss_display_step'], saver_step=train_params['saver_step'], z_rotate=train_params['z_rotate'], encoder=encoder, decoder=decoder, encoder_args=enc_args, decoder_args=dec_args) conf.experiment_name = experiment_name conf.held_out_step = 5 # how often to evaluate/print the loss on held_out data (if they are provided) conf.object_class = object_class conf.class_names = class_names conf.sort_axes = flags.sort_axes conf.encoder_args['return_layer_before_symmetry'] = True conf.save(osp.join(train_dir, 'configuration')) if flags.save_config_and_exit: exit() # Load point clouds pc_data_train, _, _ = load_dataset(class_names, 'train_set', top_in_dir) pc_data_val, _, _ = load_dataset(class_names, 'val_set', top_in_dir) # Sort point cloud axes if flags.sort_axes:
loss = ae_loss, training_epochs = train_params['training_epochs'], batch_size = train_params['batch_size'], denoising = train_params['denoising'], learning_rate = train_params['learning_rate'], train_dir = train_dir, loss_display_step = train_params['loss_display_step'], saver_step = train_params['saver_step'], z_rotate = train_params['z_rotate'], encoder = encoder, decoder = decoder, encoder_args = enc_args, decoder_args = dec_args ) conf.experiment_name = experiment_name conf.held_out_step = 5 # How often to evaluate/print out loss on # held_out data (if they are provided in ae.train() ). conf.save(osp.join(train_dir, 'configuration')) load_pre_trained_ae = False restore_epoch = 500 if load_pre_trained_ae: conf = Conf.load(train_dir + '/configuration') reset_tf_graph() ae = PointNetAutoEncoder(conf.experiment_name, conf) ae.restore_model(conf.train_dir, epoch=restore_epoch) reset_tf_graph() ae = PointNetAutoEncoder(conf.experiment_name, conf) buf_size = 1 # Make 'training_stats' file to flush each output line regarding training.