示例#1
0
def evaluate_confusion(bs: int, file: str, fixed: int, model_path: str,
                       test_bin) -> None:
    """
    Evaluates the confusion matrix for a given number of features
    :param bs: batch size
    :param file: file where the confusion matrix will be written
    :param fixed: number of features to be considered
    :param model_path: string pointing to the .h5 keras model of the network.
    If empty will default to data_dir/model.h5
    :param test_bin: path to the test dataset that will be used
    """
    test = BinaryDs(test_bin, read_only=True).open()
    binary = test.get_categories() <= 2
    model = load_model(model_path)
    generator = DataGenerator(test, bs, fake_pad=True, pad_len=fixed,
                              predict=True)
    expected = get_expected(bs, test)
    predicted = model.predict(generator, verbose=1)
    if binary:
        predicted = np.round(predicted).flatten().astype(np.int8)
    else:
        predicted = np.argmax(predicted, axis=1)
    matrix = np.array(tf.math.confusion_matrix(expected, predicted))
    with open(file, "w") as f:
        np.savetxt(f, X=matrix, fmt="%d")
    test.close()
示例#2
0
def count_categories(dataset: BinaryDs) -> List[int]:
    examples = dataset.get_examples_no()
    amount = 1000
    read_total = int(examples / amount)
    remainder = examples % amount
    categories = []
    for i in range(read_total):
        buffer = dataset.read(i * amount, amount)
        for val in buffer:
            category = val[0]
            while len(categories) <= category:
                categories.append(0)
            categories[category] += 1
    if remainder > 0:
        buffer = dataset.read(read_total * amount, remainder)
        for val in buffer:
            category = val[0]
            while len(categories) <= category:
                categories.append(0)
            categories[category] += 1
    assert len(categories) == dataset.get_categories()
    return categories