def evaluate_inference(self, config_path: Optional[str] = None) -> None: try: config = GraphExecutorConfigReader(config_path, reader_type='val') evaluator = PostInferenceEvaluator(config=config) evaluator.evaluate() except Exception as ex: print('Failed to proceed model evaluation. {}'.format(ex))
def visualise_data_augmentation(self, descriptive_name: str, config_path: Optional[str] = None) -> None: try: config = GraphExecutorConfigReader(config_path) self._execute_graph_operation_pipeline( executor_type=GraphExecutorType.TEST_DATA_TRANSFORMATION, descriptive_name=descriptive_name, config=config) except Exception as ex: print(f'Failed to proceed data augmentation visualisation. {ex}')
def overfit_training(self, descriptive_name: str, config_path: Optional[str] = None) -> None: try: config = GraphExecutorConfigReader(config_path) self._execute_graph_operation_pipeline( executor_type=GraphExecutorType.OVERFIT_TRAIN, descriptive_name=descriptive_name, config=config) except Exception as ex: print(f'Failed to proceed overfitting training. {ex}')
def evaluate_model(self, descriptive_name: Union[str, None] = None, config_path: Union[str, None] = None) -> None: try: config = GraphExecutorConfigReader(config_path, reader_type='val') if descriptive_name is None: descriptive_name = 'model_evaluation' self._execute_graph_operation_pipeline( GraphExecutorType.EVALUATION, descriptive_name, config) except Exception as ex: print('Failed to proceed model evaluation. {}'.format(ex))
def visualise_graph(self, descriptive_name: Union[str, None] = None, config_path: Union[str, None] = None) -> None: try: config = GraphExecutorConfigReader(config_path, reader_type='val') if descriptive_name is None: descriptive_name = 'graph_visualisation' self._execute_graph_operation_pipeline( GraphExecutorType.GRAPH_VISUALISATION, descriptive_name, config) except Exception as ex: print('Failed to visualise graph. {}'.format(ex))
def measure_inference_speed(self, descriptive_name: Union[str, None] = None, config_path: Union[str, None] = None) -> None: try: config = GraphExecutorConfigReader(config_path, reader_type='val') if descriptive_name is None: descriptive_name = 'model_inference_speed_measurement' self._execute_graph_operation_pipeline( GraphExecutorType.INFERENCE_SPEED_TEST, descriptive_name, config) except Exception as ex: print('Failed to proceed speed evaluation. {}'.format(ex))
def get_predictions_from_model( self, descriptive_name: Union[str, None] = None, config_path: Union[str, None] = None) -> None: try: config = GraphExecutorConfigReader(config_path, reader_type='val') if descriptive_name is None: descriptive_name = 'model_predictions' self._execute_graph_operation_pipeline(GraphExecutorType.INFERENCE, descriptive_name, config) except Exception as ex: print( 'Failed to proceed taking inference from model. {}'.format(ex))