示例#1
0
def create_network(name, *args, **kwargs):
    if name == 'autodis':
        model_config = ModelConfig()
        train_config = TrainConfig()
        model_builder = ModelBuilder(model_config, train_config)
        _, autodis_eval_net = model_builder.get_train_eval_net()
        return autodis_eval_net
    raise NotImplementedError(f"{name} is not implemented in the repo")
示例#2
0
                    help='Ascend, GPU, or CPU')
args_opt, _ = parser.parse_known_args()
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
                    device_target=args_opt.device_target,
                    device_id=device_id)


def add_write(file_path, print_str):
    with open(file_path, 'a+', encoding='utf-8') as file_out:
        file_out.write(print_str + '\n')


if __name__ == '__main__':
    data_config = DataConfig()
    model_config = ModelConfig()
    train_config = TrainConfig()

    ds_eval = create_dataset(args_opt.dataset_path,
                             train_mode=False,
                             epochs=1,
                             batch_size=train_config.batch_size,
                             data_type=DataType(data_config.data_format))
    model_builder = ModelBuilder(ModelConfig, TrainConfig)
    train_net, eval_net = model_builder.get_train_eval_net()
    train_net.set_train()
    eval_net.set_train(False)
    auc_metric = AUCMetric()
    model = Model(train_net,
                  eval_network=eval_net,
                  metrics={"auc": auc_metric})
示例#3
0
文件: train.py 项目: yrpang/mindspore
                    help='Auc log file path. Default: "./auc.log"')
parser.add_argument('--loss_file_name', type=str, default="./loss.log",
                    help='Loss log file path. Default: "./loss.log"')
parser.add_argument('--do_eval', type=str, default='True',
                    help='Do evaluation or not, only support "True" or "False". Default: "True"')
parser.add_argument('--device_target', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
                    help="device target, support Ascend, GPU and CPU.")
args_opt, _ = parser.parse_known_args()
args_opt.do_eval = args_opt.do_eval == 'True'
rank_size = int(os.environ.get("RANK_SIZE", 1))

set_seed(1)

if __name__ == '__main__':
    data_config = DataConfig()
    model_config = ModelConfig()
    train_config = TrainConfig()

    if rank_size > 1:
        if args_opt.device_target == "Ascend":
            device_id = int(os.getenv('DEVICE_ID'))
            context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
            context.reset_auto_parallel_context()
            context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
                                              gradients_mean=True,
                                              all_reduce_fusion_config=[9, 11])
            init()
            rank_id = int(os.environ.get('RANK_ID'))
        elif args_opt.device_target == "GPU":
            init()
            context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
示例#4
0
from src.train import Trainer
from src.model import ThumbnailSelector
from src.config import TrainerConfig, ModelConfig


if __name__ == '__main__':
    mconfig, tconfig = ModelConfig(), TrainerConfig()
    model = ThumbnailSelector(mconfig)
    trainer = Trainer(model, tconfig)
    trainer.train()