示例#1
0
def compute_ari(idx, param_df, classes, class_type="Class 1", remove_non_mb=False):
    preprocess_params = dict(param_df.loc[idx, ["binarize", "threshold"]])
    graph_type = param_df.loc[idx, "graph_type"]
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(mg, sym_threshold=True, remove_pdiff=True, **preprocess_params)
    left_mb_indicator = mg.meta[class_type].isin(classes) & (
        mg.meta["Hemisphere"] == "L"
    )
    right_mb_indicator = mg.meta[class_type].isin(classes) & (
        mg.meta["Hemisphere"] == "R"
    )
    labels = np.zeros(len(mg.meta))
    labels[left_mb_indicator.values] = 1
    labels[right_mb_indicator.values] = 2
    pred_labels = best_block_df[idx]
    pred_labels = pred_labels[pred_labels.index.isin(mg.meta.index)]
    assert np.array_equal(pred_labels.index, mg.meta.index), print(idx)

    if remove_non_mb:  # only consider ARI for clusters with some MB mass
        uni_pred = np.unique(pred_labels)
        keep_mask = np.ones(len(labels), dtype=bool)
        for p in uni_pred:
            if np.sum(labels[pred_labels == p]) == 0:
                keep_mask[pred_labels == p] = False
        labels = labels[keep_mask]
        pred_labels = pred_labels[keep_mask]

    ari = adjusted_rand_score(labels, pred_labels)
    return ari
示例#2
0
def plot_class_colormap():
    from src.visualization import palplot
    from src.data import load_metagraph

    mg = load_metagraph("G")
    uni_class, counts = np.unique(mg["merge_class"], return_counts=True)
    count_map = dict(zip(uni_class, counts))
    names = []
    colors = []
    for key, val in CLASS_COLOR_DICT.items():
        if key in uni_class:
            names.append(f"{key} ({count_map[key]})")
            colors.append(val)
    fig, ax = plt.subplots(1, 1, figsize=(3, 15))
    palplot(len(colors), colors, ax=ax)
    ax.yaxis.set_major_formatter(plt.FixedFormatter(names))
    plt.savefig("./maggot_models/notebooks/outs/current_cmap.png",
                dpi=300,
                bbox_inches="tight")
示例#3
0
def compute_ari(idx):
    preprocess_params = dict(best_param_df.loc[idx, ["binarize", "threshold"]])
    graph_type = best_param_df.loc[idx, "graph_type"]
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(mg,
                    sym_threshold=True,
                    remove_pdiff=True,
                    **preprocess_params)
    left_mb_indicator = mg.meta["Class 1"].isin(mb_classes) & (
        mg.meta["Hemisphere"] == "L")
    right_mb_indicator = mg.meta["Class 1"].isin(mb_classes) & (
        mg.meta["Hemisphere"] == "R")
    labels = np.zeros(len(mg.meta))
    labels[left_mb_indicator.values] = 1
    labels[right_mb_indicator.values] = 2
    pred_labels = best_block_df[idx]
    pred_labels = pred_labels[pred_labels.index.isin(mg.meta.index)]
    assert np.array_equal(pred_labels.index, mg.meta.index)
    ari = adjusted_rand_score(labels, pred_labels)
    return ari
示例#4
0
def run_experiment(
    graph_type=None,
    threshold=None,
    binarize=None,
    seed=None,
    param_key=None,
    objective_function=None,
    implementation="leidenalg",
    **kws,
):
    np.random.seed(seed)

    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(
        mg,
        threshold=threshold,
        sym_threshold=True,
        remove_pdiff=True,
        binarize=binarize,
    )
    if implementation == "leidenalg":
        if objective_function == "CPM":
            partition_type = la.CPMVertexPartition
        elif objective_function == "modularity":
            partition_type = la.ModularityVertexPartition
        partition, modularity = run_leiden(
            mg,
            temp_loc=seed,
            implementation=implementation,
            partition_type=partition_type,
            **kws,
        )
    elif implementation == "igraph":
        partition, modularity = run_leiden(
            mg, temp_loc=seed, implementation=implementation, **kws
        )
    partition.name = param_key
    return partition, modularity
示例#5
0
        tlp_inds = np.arange(len(embed) // 2)
        trp_inds = np.arange(len(embed) // 2) + len(embed) // 2
        add_connections(
            plot_df.iloc[tlp_inds, 0],
            plot_df.iloc[trp_inds, 0],
            plot_df.iloc[tlp_inds, 1],
            plot_df.iloc[trp_inds, 1],
            ax=ax,
        )
    return fig, ax


# %% [markdown]
# ##
graph_type = "G"
master_mg = load_metagraph(graph_type, version="2020-04-01")
mg = preprocess(
    master_mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

degrees = mg.calculate_degrees()
quant_val = np.quantile(degrees["Total edgesum"], 0.05)

# remove low degree neurons
idx = meta[degrees["Total edgesum"] > quant_val].index
示例#6
0
    for co in class_order:
        class_value = full_meta.groupby(sc)[co].mean()
        full_meta[f"{sc}_{co}_order"] = full_meta[sc].map(class_value)
        total_sort_by.append(f"{sc}_{co}_order")
    total_sort_by.append(sc)

full_mg = full_mg.sort_values(total_sort_by, ascending=False)
full_meta = full_mg.meta

n_leaf = full_meta[f"lvl{lowest_level}_labels"].nunique()
n_pairs = len(full_meta) // 2

# %% [markdown]
# ## Random walk stuff

ad_mg = load_metagraph("Gad")
ad_mg = preprocess(ad_mg,
                   sym_threshold=False,
                   remove_pdiff=True,
                   binarize=False)
ad_mg.meta["inds"] = range(len(ad_mg))
ad_adj = ad_mg.adj
meta = ad_mg.meta

source_groups = [
    ("sens-ORN", ),
    ("sens-MN", ),
    ("sens-photoRh5", "sens-photoRh6"),
    ("sens-thermo", ),
    ("sens-vtd", ),
    ("sens-AN", ),
示例#7
0
def stashcsv(df, name, **kws):
    savecsv(df, name)


def invert_permutation(p):
    """The argument p is assumed to be some permutation of 0, 1, ..., len(p)-1. 
    Returns an array s, where s[i] gives the index of i in p.
    """
    p = np.asarray(p)
    s = np.empty(p.size, p.dtype)
    s[p] = np.arange(p.size)
    return s


graph_type = "G"
mg = load_metagraph(graph_type, version="2020-04-01")
mg = preprocess(
    mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

# plot where we are cutting out nodes based on degree
degrees = mg.calculate_degrees()
fig, ax = plt.subplots(1, 1, figsize=(5, 2.5))
sns.distplot(np.log10(degrees["Total edgesum"]), ax=ax)
q = np.quantile(degrees["Total edgesum"], 0.05)
示例#8
0
def get_best_run(perms, scores, n_opts=None):
    if n_opts is None:
        n_opts = len(perms)
    opt_inds = np.random.choice(len(perms), n_opts, replace=False)
    perms = perms[opt_inds]
    scores = scores[opt_inds]
    max_ind = np.argmax(scores)
    return perms[max_ind], scores[max_ind]


# %% [markdown]
# ##
np.random.seed(8888)

graph_type = "G"
master_mg = load_metagraph(graph_type)
mg = master_mg.remove_pdiff()
meta = mg.meta

degrees = mg.calculate_degrees()
quant_val = np.quantile(degrees["Total edgesum"], 0.05)

# remove low degree neurons
idx = meta[degrees["Total edgesum"] > quant_val].index
print(quant_val)
mg = mg.reindex(idx, use_ids=True)

# remove center neurons # FIXME
idx = mg.meta[mg.meta["hemisphere"].isin(["L", "R"])].index
mg = mg.reindex(idx, use_ids=True)
示例#9
0
def stashfig(name, **kws):
    savefig(name, foldername=FNAME, save_on=True, **kws)


def stashcsv(df, name, **kws):
    savecsv(df, name, foldername=FNAME, save_on=True, **kws)


VERSION = "2020-01-29"
print(f"Using version {VERSION}")

graph_type = "Gad"
threshold = 1
weight = "weight"
mg = load_metagraph("Gad", VERSION)
mg = preprocess(
    mg,
    threshold=threshold,
    sym_threshold=True,
    remove_pdiff=False,
    binarize=False,
    weight=weight,
)
print(f"Preprocessed graph {graph_type} with threshold={threshold}, weight={weight}")

out_classes = ["O_dVNC"]
sens_classes = ["sens"]
cutoff = 8

print(f"Finding paths from {sens_classes} to {out_classes} of max length {cutoff}")
示例#10
0
context = sns.plotting_context(context="talk", font_scale=1, rc=rc_dict)
sns.set_context(context)

np.random.seed(8888)


def stashfig(name, **kws):
    savefig(name, foldername=FNAME, save_on=True, **kws)


def stashcsv(df, name, **kws):
    savecsv(df, name, foldername=FNAME, **kws)


graph_type = "G"
master_mg = load_metagraph(graph_type, version="2020-04-23")
mg = preprocess(
    master_mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

degrees = mg.calculate_degrees()
quant_val = np.quantile(degrees["Total edgesum"], 0.05)

# remove low degree neurons
idx = meta[degrees["Total edgesum"] > quant_val].index
示例#11
0
    saveskels(
        name,
        ids,
        labels,
        colors=colors,
        palette=None,
        foldername=FNAME,
        save_on=SAVESKELS,
        **kws,
    )


# %% [markdown]
# #
graph_type = "Gad"
mg = load_metagraph(graph_type, BRAIN_VERSION)
# only consider the edges for which we have a mirror edges
edgelist = mg.to_edgelist(remove_unpaired=True)

max_edge = edgelist["weight"].max()

rows = []
for edgeweight in range(1, max_edge + 1):
    temp_edgelist = edgelist[edgelist["weight"] == edgeweight]
    n_edges = len(temp_edgelist)
    n_edges_mirrored = (temp_edgelist["edge pair counts"] == 2).sum()
    row = {
        "weight": edgeweight,
        "n_edges": n_edges,
        "n_edges_mirrored": n_edges_mirrored,
        "p_edge_mirrored": n_edges_mirrored / n_edges,
示例#12
0
    return outs


def invert_permutation(p):
    """The argument p is assumed to be some permutation of 0, 1, ..., len(p)-1. 
    Returns an array s, where s[i] gives the index of i in p.
    """
    s = np.empty(p.size, p.dtype)
    s[p] = np.arange(p.size)
    return s


# %% [markdown]
# # Load data

mg = load_metagraph("Gadn", version=BRAIN_VERSION)
adj = mg.adj
skeleton_labels = mg.meta.index.values
# %% [markdown]
# # Deal with pairs
pair_df = pd.read_csv(
    "maggot_models/data/raw/Maggot-Brain-Connectome/pairs/knownpairsatround5.csv"
)

print(pair_df.head())

# extract valid node pairings
left_nodes = pair_df["leftid"].values
right_nodes = pair_df["rightid"].values

left_right_pairs = list(zip(left_nodes, right_nodes))
示例#13
0
def get_edges(adj):
    adj = adj.copy()
    all_edges = []
    for i in range(adj.shape[0]):
        row = adj[i, :]
        col = adj[:, i]
        col = np.delete(col, i)
        edges = np.concatenate((row, col))
        all_edges.append(edges)
    return all_edges


# %% [markdown]
# # Play with getting edge df representatino
graph_type = "Gad"
mg = load_metagraph(graph_type, version=BRAIN_VERSION)

g = mg.g
meta = mg.meta
edgelist_df = mg.to_edgelist()

max_pair_edge_df = edgelist_df.groupby("edge pair ID").max()
edge_max_weight_map = dict(
    zip(max_pair_edge_df.index.values, max_pair_edge_df["weight"])
)
edgelist_df["max_weight"] = itemgetter(*edgelist_df["edge pair ID"])(
    edge_max_weight_map
)

# %% [markdown]
# #
示例#14
0
    return out_list


def get_edges(adj):
    adj = adj.copy()
    all_edges = []
    for i in range(adj.shape[0]):
        row = adj[i, :]
        col = adj[:, i]
        col = np.delete(col, i)
        edges = np.concatenate((row, col))
        all_edges.append(edges)
    return all_edges


mg = load_metagraph("Gn", version="2019-12-18")
base_path = Path("maggot_models/data/raw/Maggot-Brain-Connectome/")
pair_df = pd.read_csv(base_path / "pairs/bp-pairs-2020-01-13.csv")
all_cells_file = base_path / "neuron-groups/all-neurons-2020-01-13.json"

skeleton_labels = mg.meta.index.values

# extract valid node pairings
left_nodes = pair_df["leftid"].values
right_nodes = pair_df["rightid"].values

left_right_pairs = list(zip(left_nodes, right_nodes))

with open(all_cells_file) as json_file:
    temp_dict = json.load(json_file)
    all_ids = extract_ids(temp_dict)
示例#15
0
        trp_inds = np.arange(len(embed) // 2) + len(embed) // 2
        add_connections(
            plot_df.iloc[tlp_inds, 0],
            plot_df.iloc[trp_inds, 0],
            plot_df.iloc[tlp_inds, 1],
            plot_df.iloc[trp_inds, 1],
            ax=ax,
        )
    return fig, ax


# %% [markdown]
# ## Load and preprocess data
VERSION = "2020-04-23"
graph_type = "G"
master_mg = load_metagraph(graph_type, version="2020-04-23")
mg = preprocess(
    master_mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

degrees = mg.calculate_degrees()
quant_val = np.quantile(degrees["Total edgesum"], 0.05)

# remove low degree neurons
idx = meta[degrees["Total edgesum"] > quant_val].index
示例#16
0
from src.io import savecsv, savefig, saveskels

import os

FNAME = os.path.basename(__file__)[:-3]
print(FNAME)


def stashfig(name, **kws):
    savefig(name, foldername=FNAME, save_on=True, **kws)


VERSION = "2020-03-09"
print(f"Using version {VERSION}")

mg = load_metagraph("G", version=VERSION)
start_instance()

nl = pymaid.get_neurons([mg.meta.index[2]])

# Plot using default settings
fig, ax = nl.plot2d()

# %% [markdown]
# #
mg = mg.sort_values("Pair ID")
nl = pymaid.get_neurons(mg.meta[mg.meta["Merge Class"] == "sens-ORN"].index.values)
fig, ax = nl.plot2d()


# %%
示例#17
0

def get_vals_by_k(ks, perm_adj):
    ys = []
    xs = []
    for k in ks:
        y = perm_adj[diag_indices(len(perm_adj), k)]
        ys.append(y)
        x = np.full(len(y), k)
        xs.append(x)
    return np.concatenate(ys), np.concatenate(xs)


remove_missing = True

mg = load_metagraph("G")
mg = mg.remove_pdiff()
mg = mg.make_lcc()
main_meta = mg.meta.copy()

graph_types = ["G", "Gad", "Gaa", "Gdd", "Gda"]
graph_names = dict(
    zip(graph_types,
        [r"Sum", r"A $\to$ D", r"A $\to$ A", r"D $\to$ D", r"D $\to$ A"]))
adjs = []
adj_dict = {}
mg_dict = {}
for g in graph_types:
    temp_mg = load_metagraph(g)
    temp_mg.reindex(mg.meta.index, use_ids=True)
    # temp_adj = temp_mg.adj
示例#18
0
def run_experiment(graph_type=None, thresh=None, res=None):
    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    edgelist = mg.to_edgelist()
    edgelist = add_max_weight(edgelist)
    edgelist = edgelist[edgelist["max_weight"] > thresh]
    mg = edgelist_to_mg(edgelist, mg.meta)
    mg = mg.make_lcc()
    mg = mg.remove_pdiff()
    g_sym = nx.to_undirected(mg.g)
    skeleton_labels = np.array(list(g_sym.nodes()))
    partition = run_louvain(g_sym, res, skeleton_labels)

    # compute signal flow for sorting purposes
    mg.meta["signal_flow"] = signal_flow(mg.adj)
    mg.meta["partition"] = partition
    partition_sf = mg.meta.groupby("partition")["signal_flow"].median()
    sort_partition_sf = partition_sf.sort_values(ascending=False)

    # common names
    basename = f"louvain-res{res}-t{thresh}-{graph_type}-"
    title = f"Louvain, {graph_type}, res = {res}, thresh = {thresh}"

    # get out some metadata
    class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
    class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict))
    lineage_label_dict = nx.get_node_attributes(g_sym, "lineage")
    lineage_labels = np.array(itemgetter(*skeleton_labels)(lineage_label_dict))
    lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
    classlin_labels, color_dict, hatch_dict = augment_classes(
        skeleton_labels, class_labels, lineage_labels)

    # barplot by merge class and lineage
    fig, axs = barplot_text(
        partition,
        classlin_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
        hatch_dict=hatch_dict,
    )
    stashfig(basename + "barplot-mergeclasslin-props")
    fig, axs = barplot_text(
        partition,
        class_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
        hatch_dict=None,
    )
    stashfig(basename + "barplot-mergeclass-props")
    fig, axs = barplot_text(
        partition,
        class_labels,
        color_dict=color_dict,
        plot_proportions=False,
        norm_bar_width=False,
        figsize=(24, 18),
        title=title,
        hatch_dict=None,
    )
    stashfig(basename + "barplot-mergeclass-counts")
    fig, axs = barplot_text(
        partition,
        lineage_labels,
        color_dict=None,
        plot_proportions=False,
        norm_bar_width=True,
        figsize=(24, 18),
        title=title,
    )
    stashfig(basename + "barplot-lineage-props")

    # sorted heatmap
    heatmap(
        mg.adj,
        transform="simple-nonzero",
        figsize=(20, 20),
        inner_hier_labels=partition,
        hier_label_fontsize=10,
        title=title,
        title_pad=80,
    )
    stashfig(basename + "heatmap")

    # block probability matrices
    counts = False
    weights = False
    prob_df = get_blockmodel_df(mg.adj,
                                partition,
                                return_counts=counts,
                                use_weights=weights)
    prob_df = prob_df.reindex(sort_partition_sf.index, axis=0)
    prob_df = prob_df.reindex(sort_partition_sf.index, axis=1)
    ax = probplot(
        100 * prob_df,
        fmt="2.0f",
        figsize=(20, 20),
        title=f"Louvain, res = {res}, counts = {counts}, weights = {weights}",
    )
    ax.set_ylabel(r"Median signal flow $\to$", fontsize=28)
    stashfig(basename + f"probplot-counts{counts}-weights{weights}")

    # plot minigraph with layout
    adjusted_partition = adjust_partition(partition, class_labels)
    minigraph = to_minigraph(mg.adj,
                             adjusted_partition,
                             use_counts=True,
                             size_scaler=10)
    draw_networkx_nice(
        minigraph,
        "Spring-x",
        "Signal Flow",
        sizes="Size",
        colors="Color",
        cmap="Greys",
        vmin=100,
        weight_scale=0.001,
    )
    stashfig(basename + "sbm-drawn-network")
示例#19
0
        trp_inds = np.arange(len(embed) // 2) + len(embed) // 2
        add_connections(
            plot_df.iloc[tlp_inds, 0],
            plot_df.iloc[trp_inds, 0],
            plot_df.iloc[tlp_inds, 1],
            plot_df.iloc[trp_inds, 1],
            ax=ax,
        )
    return fig, ax


# %% [markdown]
# ## Load and preprocess data
VERSION = "2020-04-23"
graph_type = "G"
master_mg = load_metagraph(graph_type, version=VERSION)
mg = preprocess(
    master_mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

degrees = mg.calculate_degrees()
quant_val = np.quantile(degrees["Total edgesum"], 0.05)

# remove low degree neurons
idx = meta[degrees["Total edgesum"] > quant_val].index
示例#20
0
def run_experiment(graph_type=None,
                   threshold=None,
                   res=None,
                   binarize=None,
                   seed=None,
                   param_key=None):
    # common names
    if BLIND:
        basename = f"{param_key}-"
        title = param_key
    else:
        basename = f"louvain-res{res}-t{threshold}-{graph_type}-"
        title = f"Louvain, {graph_type}, res = {res}, threshold = {threshold}"

    np.random.seed(seed)

    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(
        mg,
        threshold=threshold,
        sym_threshold=True,
        remove_pdiff=True,
        binarize=binarize,
    )
    g_sym = nx.to_undirected(mg.g)
    skeleton_labels = np.array(list(g_sym.nodes()))
    partition, modularity = run_louvain(g_sym, res, skeleton_labels)

    partition_series = pd.Series(partition, index=skeleton_labels)
    partition_series.name = param_key

    if SAVEFIGS:
        # get out some metadata
        class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
        class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict))
        lineage_label_dict = nx.get_node_attributes(g_sym, "lineage")
        lineage_labels = np.array(
            itemgetter(*skeleton_labels)(lineage_label_dict))
        lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
        classlin_labels, color_dict, hatch_dict = augment_classes(
            class_labels, lineage_labels)

        # TODO then sort all of them by proportion of sensory/motor
        # barplot by merge class and lineage
        _, _, order = barplot_text(
            partition,
            classlin_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=hatch_dict,
            return_order=True,
        )
        stashfig(basename + "barplot-mergeclasslin-props")
        category_order = np.unique(partition)[order]

        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-props")
        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=False,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-counts")

        # TODO add gridmap

        counts = False
        weights = False
        prob_df = get_blockmodel_df(mg.adj,
                                    partition,
                                    return_counts=counts,
                                    use_weights=weights)
        prob_df = prob_df.reindex(category_order, axis=0)
        prob_df = prob_df.reindex(category_order, axis=1)
        probplot(100 * prob_df,
                 fmt="2.0f",
                 figsize=(20, 20),
                 title=title,
                 font_scale=0.7)
        stashfig(basename + f"probplot-counts{counts}-weights{weights}")

    return partition_series, modularity
示例#21
0
def run_experiment(seed=None, graph_type=None, threshold=None, param_key=None):
    np.random.seed(seed)
    if BLIND:
        temp_param_key = param_key.replace(
            " ", "")  # don't want spaces in filenames
        savename = f"{temp_param_key}-cell-types-"
        title = param_key
    else:
        savename = f"{graph_type}-t{threshold}-cell-types"
        title = f"{graph_type}, threshold = {threshold}"

    mg = load_metagraph(graph_type, version=VERSION)

    # simple threshold
    # TODO they will want symmetric threshold...
    # TODO maybe make that a parameter
    adj = mg.adj.copy()
    adj[adj <= threshold] = 0
    meta = mg.meta.copy()
    meta = pd.DataFrame(mg.meta["neuron_name"])
    mg = MetaGraph(adj, meta)

    # run the graphtool code
    temp_loc = f"maggot_models/data/interim/temp-{param_key}.graphml"
    block_series = run_minimize_blockmodel(mg, temp_loc)

    # manage the output
    mg = load_metagraph(graph_type, version=VERSION)
    mg.meta = pd.concat((mg.meta, block_series), axis=1)
    mg.meta["Original index"] = range(len(mg.meta))
    keep_inds = mg.meta[~mg.meta["block_label"].isna(
    )]["Original index"].values
    mg.reindex(keep_inds)
    if graph_type != "G":
        mg.verify(10000, graph_type=graph_type, version=VERSION)

    # deal with class labels
    lineage_labels = mg.meta["lineage"].values
    lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
    class_labels = mg["Merge Class"]
    skeleton_labels = mg.meta.index.values
    classlin_labels, color_dict, hatch_dict = augment_classes(
        skeleton_labels, class_labels, lineage_labels)
    block_label = mg["block_label"].astype(int)

    # barplot with unknown class labels merged in, proportions
    _, _, order = barplot_text(
        block_label,
        classlin_labels,
        norm_bar_width=True,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        return_order=True,
    )
    stashfig(savename + "barplot-mergeclasslin-props")
    category_order = np.unique(block_label)[order]

    # barplot with regular class labels
    barplot_text(
        block_label,
        class_labels,
        norm_bar_width=True,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        category_order=category_order,
    )
    stashfig(savename + "barplot-mergeclass-props")

    # barplot with unknown class labels merged in, counts
    barplot_text(
        block_label,
        classlin_labels,
        norm_bar_width=False,
        color_dict=color_dict,
        hatch_dict=hatch_dict,
        title=title,
        figsize=(24, 18),
        return_order=True,
        category_order=category_order,
    )
    stashfig(savename + "barplot-mergeclasslin-counts")

    # barplot of hemisphere membership
    fig, ax = plt.subplots(1, 1, figsize=(10, 20))
    stacked_barplot(
        block_label,
        mg["Hemisphere"],
        norm_bar_width=True,
        category_order=category_order,
        ax=ax,
    )
    remove_spines(ax)
    stashfig(savename + "barplot-hemisphere")

    # plot block probability matrix
    counts = False
    weights = False
    prob_df = get_blockmodel_df(mg.adj,
                                block_label,
                                return_counts=counts,
                                use_weights=weights)
    prob_df = prob_df.reindex(order, axis=0)
    prob_df = prob_df.reindex(order, axis=1)
    ax = probplot(100 * prob_df,
                  fmt="2.0f",
                  figsize=(20, 20),
                  title=title,
                  font_scale=0.4)
    stashfig(savename + "probplot")
    block_series.name = param_key
    return block_series
示例#22
0
            f.plot2d(ax=ax, color=color, method="3d")
            title = f"{neuron_class}, {n.neuron_name}, {n.skeleton_id}"
            ax.set_title(title, color="grey")
        set_axes_equal(ax)
    plt.tight_layout()


def get_savename(nl, neuron_class=None):
    savename = f"{neuron_class}"
    for n in nl:
        savename += f"-{n.skeleton_id}"
    savename += "-split"
    return savename


mg = load_metagraph("G")
meta = mg.meta

start_instance()

skeleton_color_dict = dict(
    zip(meta.index,
        np.vectorize(CLASS_COLOR_DICT.get)(meta["merge_class"])))
connection_types = ["axon", "dendrite", "unsplittable"]
pal = sns.color_palette("deep", 5)
colors = [pal[1], pal[2], pal[4]]
connection_colors = dict(zip(connection_types, colors))

splits = pymaid.find_treenodes(tags="mw axon split")
splits = splits.set_index("skeleton_id")["treenode_id"].squeeze()
示例#23
0
        foldername=FNAME,
        save_on=SAVESKELS,
        **kws,
    )


def stashobj(obj, name, **kws):
    saveobj(obj, name, foldername=FNAME, save_on=SAVEOBJS, **kws)


graph_type = "G"
threshold = 3
binarize = True

# load and preprocess the data
mg = load_metagraph(graph_type, version=BRAIN_VERSION)
mg = preprocess(mg,
                threshold=threshold,
                sym_threshold=True,
                remove_pdiff=True,
                binarize=binarize)

#%%

import leidenalg as la
import igraph as ig


def _process_metagraph(mg, temp_loc):
    adj = mg.adj
    adj = symmetrize(adj, method="avg")
示例#24
0
        remove_spines(ax)
        ax.xaxis.set_major_locator(plt.FixedLocator([0]))
        ax.yaxis.set_major_locator(plt.FixedLocator([0]))
        ax.set_title(f"Dimension {d}")


def remove_cols(mat, remove_inds):
    kept_inds = list(range(mat.shape[1]))
    [kept_inds.remove(i) for i in remove_inds]
    return mat[:, kept_inds]


# %% [markdown]
# #
thresh = 0.0
ad_norm_mg = load_metagraph("Gadn", BRAIN_VERSION)
ad_norm_mg.adj[ad_norm_mg.adj < thresh] = 0
ad_norm_mg, n_pairs = pair_augment(ad_norm_mg)

left_pair_ids = ad_norm_mg["Pair ID"][:n_pairs]
right_pair_ids = ad_norm_mg["Pair ID"][n_pairs:2 * n_pairs]
print((left_pair_ids == right_pair_ids).all())

sym_mg = max_symmetrize(ad_norm_mg, n_pairs)
left_pair_ids = sym_mg["Pair ID"][:n_pairs]
right_pair_ids = sym_mg["Pair ID"][n_pairs:2 * n_pairs]
print((left_pair_ids == right_pair_ids).all())

sym_mg.make_lcc()
n_pairs = sym_mg.meta["Pair ID"].nunique() - 1
left_pair_ids = sym_mg["Pair ID"][:n_pairs]
示例#25
0
                stop_reasons[2] += 1

    print(stop_reasons / stop_reasons.sum())
    print(len(sm_paths))
    return sm_paths, visit_orders


#%% Load and preprocess the data

VERSION = "2020-01-29"
print(f"Using version {VERSION}")

graph_type = "G"
threshold = 1
weight = "weight"
mg = load_metagraph(graph_type, VERSION)
mg = preprocess(
    mg,
    threshold=threshold,
    sym_threshold=True,
    remove_pdiff=False,
    binarize=False,
    weight=weight,
)
print(
    f"Preprocessed graph {graph_type} with threshold={threshold}, weight={weight}"
)

out_classes = [
    "O_dVNC",
    "O_dSEZ",
示例#26
0

def stashfig(name, **kws):
    if SAVEFIGS:
        savefig(name, foldername=FNAME, **kws)


brain_version = "2020-02-26"

graph_versions = [
    "G", "Gad", "Gaa", "Gdd", "Gda", "Gn", "Gadn", "Gaan", "Gddn", "Gdan"
]

for graph_version in graph_versions:
    # sort the graph
    mg = load_metagraph(graph_version, brain_version)
    paired_inds = np.where(mg.meta["Pair ID"] != -1)[0]
    mg = mg.reindex(paired_inds)
    mg.sort_values(["Merge Class", "Pair ID", "Hemisphere"], ascending=True)
    # if graph_version not in ["G", "Gn"]:
    mg.verify(n_checks=10000, graph_type=graph_version, version=brain_version)

    # plot the sorted graph
    mg.meta["Index"] = range(len(mg))
    groups = mg.meta.groupby("Merge Class", as_index=True)
    tick_locs = groups["Index"].mean()
    border_locs = groups["Index"].first()

    fig, ax = plt.subplots(1, 1, figsize=(30, 30))
    gridmap(mg.adj, sizes=(3, 5), ax=ax)
    for bl in border_locs:
示例#27
0
from src.embed import ase, lse, preprocess_graph
from src.graph import MetaGraph
from src.hierarchy import signal_flow
from src.io import savefig, saveobj, saveskels
from src.utils import get_blockmodel_df, get_sbm_prob, invert_permutation
from src.visualization import bartreeplot, get_color_dict, get_colors, sankey, screeplot

FNAME = os.path.basename(__file__)[:-3]
print(FNAME)

print(nx.__version__)

# %% [markdown]
# #
BRAIN_VERSION = "2020-01-16"
mg = load_metagraph("G", BRAIN_VERSION)
mg.make_lcc()
mg.sort_values("Merge Class")
adj = mg.adj
class_labels = mg["Class 1"]

trans_mat = adj.copy()
row_sums = np.sum(adj, axis=1)
trans_mat = trans_mat / row_sums[:, np.newaxis]
trans_mat[np.isnan(trans_mat)] = 0

trans_mat.sum(axis=1)

# %% [markdown]
# #
U, S, V = np.linalg.svd(adj)
示例#28
0
#%%
from src.data import load_metagraph
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

mg = load_metagraph("G", "2020-01-21")

is_pdiff = np.where(mg["is_pdiff"])[0]
mg = mg.reindex(is_pdiff)
degree_df = mg.calculate_degrees()
plt.figure()
melt_degree = pd.melt(
    degree_df.reset_index(),
    id_vars=["ID"],
    value_vars=["In degree", "Out degree", "Total degree"],
    value_name="Degree",
)
sns.stripplot(y="Degree", data=melt_degree, x="variable", jitter=0.45)

plt.figure()
melt_syns = pd.melt(
    degree_df.reset_index(),
    id_vars=["ID"],
    value_vars=["In edgesum", "Out edgesum", "Total edgesum"],
    value_name="Synapses",
)
sns.stripplot(y="Synapses", data=melt_syns, x="variable", jitter=0.45)
示例#29
0
    while nxt is not None:
        last = nxt
        nxt = next(level_it, None)

    return last


# %% [markdown]
# ## Load data
# In this case we are working with `G`, the directed graph formed by summing the edge
# weights of the 4 different graph types. Preprocessing here includes removing
# partially differentiated cells, and cutting out the lowest 5th percentile of nodes in
# terms of their number of incident synapses. 5th percentile ~= 12 synapses. After this,
# the largest connected component is used.

mg = load_metagraph("G", version="2020-04-01")
mg = preprocess(
    mg,
    threshold=0,
    sym_threshold=False,
    remove_pdiff=True,
    binarize=False,
    weight="weight",
)
meta = mg.meta

# plot where we are cutting out nodes based on degree
degrees = mg.calculate_degrees()
fig, ax = plt.subplots(1, 1, figsize=(5, 2.5))
sns.distplot(np.log10(degrees["Total edgesum"]), ax=ax)
q = np.quantile(degrees["Total edgesum"], 0.05)
示例#30
0
import numpy as np
import pandas as pd
from sklearn.metrics import pairwise_distances

from src.data import load_metagraph
from src.io import savecsv

FNAME = os.path.basename(__file__)[:-3]
print(FNAME)


def stashcsv(df, name, **kws):
    savecsv(df, name, foldername=FNAME, **kws)


mg = load_metagraph("G", version="2020-05-08")
ids = mg.meta.index.values

# load connectors
connector_path = "maggot_models/data/processed/2020-05-08/connectors.csv"
connectors = pd.read_csv(connector_path)

compartment = "dendrite"
direction = "postsynaptic"
subsample = False


def filter_connectors(connectors, ids, direction, compartment):
    label_connectors = connectors[connectors[f"{direction}_to"].isin(ids)]
    label_connectors = label_connectors[
        label_connectors[f"{direction}_type"] == compartment