def mds_and_plot(model): data = DataSet() x, y, data_list = data.get_test_frames('train') custom_model = Model(inputs=model.input, outputs=model.get_layer('dense_1').output) y_pred = custom_model.predict(x) mds = MDS() mds.fit(y_pred) a = mds.embedding_ mark = ['or', 'ob', 'og', 'oy', 'ok', '+r', 'sr', 'dr', '<r', 'pr'] color = 0 j = 0 for item in y: index = 0 for i in item: if i == 1: break index = index + 1 plt.plot([a[j:j + 1, 0]], [a[j:j + 1, 1]], mark[index], markersize=5) print(index) j += 1 plt.show()
def test_rnn(src, model): data = DataSet(src) x, y, data_list = data.get_test_frames('train') s = time.clock() y_pred = model.predict(x) e = time.clock() print(e - s) y_pred[y_pred < 0.7] = 0 y_pred[y_pred >= 0.7] = 1 print(metrics.precision_score(y, y_pred, average='micro', zero_division=0)) print(metrics.precision_score(y, y_pred, average='macro', zero_division=0)) print(metrics.recall_score(y, y_pred, average='micro', zero_division=0)) print(metrics.recall_score(y, y_pred, average='macro', zero_division=0)) print(metrics.f1_score(y, y_pred, average='weighted', zero_division=0))