def random_neg_with_rotate(img, label): if lucky(0.5): ##50% of samples set to negative samples label = label - 1 # rotate by 180 debgress img_rotate = np.rot90(img) img = np.rot90(img_rotate) return img, np.array(label).astype(np.int32)
def transform(self, im, cval=255, **kw): """According to the parameters initialized by the class, deform the incoming image""" severity = self.severity prob = self.prob cval = self.convert_color(im, cval) if lucky(prob): # affine transform im = rgeometry(im, severity=severity, cval=cval) if lucky(prob): im = rdistort(im, severity=severity, cval=cval) if lucky(prob): im = warp_perspective(im, severity=severity, cval=cval) if lucky(prob): im = resize(im, fx=kw.get('fx'), fy=kw.get('fy'), severity=severity) if lucky(prob): im = rotate_about_center(im, severity=severity, cval=cval) if lucky(prob): # the overall distortion of the image. im = whole_rdistort(im, severity=severity) if lucky(prob) and self.enable_crop: # random crop im = randcrop(im, severity=severity) return im
def add_noise(self, im): """randomly add noise to image""" severity = self.severity prob = self.prob if lucky(prob): im = noise_gamma(im, severity=severity) if lucky(prob): im = noise_blur(im, severity=severity) if lucky(prob): im = noise_gaussian(im, severity=severity) if lucky(prob): im = noise_salt_pepper(im, severity=severity) if lucky(prob): im = shift_color(im, severity=severity) if lucky(prob): im = gaussian_blur(im, severity=severity) if lucky(prob): im = noise_speckle(im, severity=severity) if lucky(prob): im = enhance_sharpness(im, severity=severity) if lucky(prob): im = enhance_contrast(im, severity=severity) if lucky(prob): im = enhance_brightness(im, severity=severity) if lucky(prob): im = enhance_color(im, severity=severity) if lucky(prob): im = random_contrast(im) return im