def predict_original_samples(self, batch, conv_type, output): """ Takes the output generated by the NN and upsamples it to the original data Arguments: batch -- processed batch conv_type -- Type of convolutio (DENSE, PARTIAL_DENSE, etc...) output -- output predicted by the model """ full_res_results = {} num_sample = BaseDataset.get_num_samples(batch, conv_type) if conv_type == "DENSE": output = output.reshape(num_sample, -1, output.shape[-1]) # [B,N,L] setattr(batch, "_pred", output) for b in range(num_sample): sampleid = batch.sampleid[b] sample_raw_pos = self.test_dataset[0].get_raw(sampleid).pos.to( output.device) predicted = BaseDataset.get_sample(batch, "_pred", b, conv_type) origindid = BaseDataset.get_sample(batch, SaveOriginalPosId.KEY, b, conv_type) full_prediction = knn_interpolate(predicted, sample_raw_pos[origindid], sample_raw_pos, k=3) labels = full_prediction.max(1)[1].unsqueeze(-1) full_res_results[self.test_dataset[0].get_filename( sampleid)] = np.hstack(( sample_raw_pos.cpu().numpy(), labels.cpu().numpy(), )) return full_res_results
def run(cfg, model: BaseModel, dataset: BaseDataset, device, measurement_name: str): measurements = {} num_batches = getattr(cfg.debugging, "num_batches", np.inf) run_epoch(model, dataset.train_dataloader(), device, num_batches) measurements["train"] = extract_histogram(model.get_spatial_ops(), normalize=False) if dataset.has_val_loader: run_epoch(model, dataset.val_dataloader(), device, num_batches) measurements["val"] = extract_histogram(model.get_spatial_ops(), normalize=False) for loader_idx, loader in enumerate(dataset.test_dataloaders()): run_epoch(model, dataset.test_dataloaders(), device, num_batches) measurements[dataset.get_test_dataset_name( loader_idx)] = extract_histogram(model.get_spatial_ops(), normalize=False) with open( os.path.join(DIR, "measurements/{}.pickle".format(measurement_name)), "wb") as f: pickle.dump(measurements, f)
def __init__(self, checkpoint_dir, model_name, weight_name, feat_name, num_classes=None, mock_dataset=True): # Checkpoint from src.datasets.base_dataset import BaseDataset from src.datasets.dataset_factory import instantiate_dataset checkpoint = model_checkpoint.ModelCheckpoint(checkpoint_dir, model_name, weight_name, strict=True) if mock_dataset: dataset = MockDataset(num_classes) dataset.num_classes = num_classes else: dataset = instantiate_dataset(checkpoint.data_config) BaseDataset.set_transform(self, checkpoint.data_config) self.model = checkpoint.create_model(dataset, weight_name=weight_name) self.model.eval()
def run(model: BaseModel, dataset: BaseDataset, device, output_path): loaders = dataset.test_dataloaders() predicted = {} for idx, loader in enumerate(loaders): dataset.get_test_dataset_name(idx) with Ctq(loader) as tq_test_loader: for data in tq_test_loader: data = data.to(device) with torch.no_grad(): model.set_input(data) model.forward() predicted = { **predicted, **dataset.predict_original_samples(data, model.conv_type, model.get_output()) } save(output_path, predicted)
def __init__(self, checkpoint_dir, model_name, weight_name, feat_name, num_classes, mock_dataset=True): super(PointNetForward, self).__init__( checkpoint_dir, model_name, weight_name, feat_name, num_classes=num_classes, mock_dataset=mock_dataset ) self.feat_name = feat_name from src.datasets.base_dataset import BaseDataset from torch_geometric.transforms import FixedPoints self.inference_transform = BaseDataset.remove_transform(self.inference_transform, [GridSampling, FixedPoints])
def run(model: BaseModel, dataset: BaseDataset, device, output_path, cfg): # Set dataloaders num_fragment = dataset.num_fragment if cfg.data.is_patch: for i in range(num_fragment): dataset.set_patches(i) dataset.create_dataloaders( model, cfg.batch_size, False, cfg.num_workers, False, ) loader = dataset.test_dataloaders()[0] features = [] scene_name, pc_name = dataset.get_name(i) with Ctq(loader) as tq_test_loader: for data in tq_test_loader: # pcd = open3d.geometry.PointCloud() # pcd.points = open3d.utility.Vector3dVector(data.pos[0].numpy()) # open3d.visualization.draw_geometries([pcd]) with torch.no_grad(): model.set_input(data, device) model.forward() features.append(model.get_output().cpu()) features = torch.cat(features, 0).numpy() log.info("save {} from {} in {}".format(pc_name, scene_name, output_path)) save(output_path, scene_name, pc_name, dataset.base_dataset[i].to("cpu"), features) else: dataset.create_dataloaders( model, 1, False, cfg.num_workers, False, ) loader = dataset.test_dataloaders()[0] with Ctq(loader) as tq_test_loader: for i, data in enumerate(tq_test_loader): with torch.no_grad(): model.set_input(data, device) model.forward() features = model.get_output()[0] # batch of 1 save(output_path, scene_name, pc_name, data.to("cpu"), features)
def test_multiple_test_datasets(self): opt = Options() opt.dataset_name = os.path.join(os.getcwd(), "test") opt.dataroot = os.path.join(os.getcwd(), "test") class MultiTestDataset(BaseDataset): def __init__(self, dataset_opt): super(MultiTestDataset, self).__init__(dataset_opt) self.train_dataset = CustomMockDataset(10, 1, 3, 10) self.val_dataset = CustomMockDataset(10, 1, 3, 10) self.test_dataset = [CustomMockDataset(10, 1, 3, 10), CustomMockDataset(10, 1, 3, 20)] dataset = MultiTestDataset(opt) model_config = MockModelConfig() model_config.conv_type = "dense" model = MockModel(model_config) dataset.create_dataloaders(model, 5, True, 0, False) loaders = dataset.test_dataloaders self.assertEqual(len(loaders), 2) self.assertEqual(len(loaders[0].dataset), 10) self.assertEqual(len(loaders[1].dataset), 20) self.assertEqual(dataset.num_classes, 3) self.assertEqual(dataset.is_hierarchical, False) self.assertEqual(dataset.has_fixed_points_transform, False) self.assertEqual(dataset.has_val_loader, True) self.assertEqual(dataset.class_to_segments, None) self.assertEqual(dataset.feature_dimension, 1) batch = next(iter(loaders[0])) num_samples = BaseDataset.get_num_samples(batch, "dense") self.assertEqual(num_samples, 5) sample = BaseDataset.get_sample(batch, "pos", 1, "dense") self.assertEqual(sample.shape, (10, 3)) sample = BaseDataset.get_sample(batch, "x", 1, "dense") self.assertEqual(sample.shape, (10, 1)) self.assertEqual(dataset.num_batches, {"train": 2, "val": 2, "test_0": 2, "test_1": 4}) repr = "Dataset: MultiTestDataset \n\x1b[0;95mpre_transform \x1b[0m= None\n\x1b[0;95mtest_transform \x1b[0m= None\n\x1b[0;95mtrain_transform \x1b[0m= None\n\x1b[0;95mval_transform \x1b[0m= None\n\x1b[0;95minference_transform \x1b[0m= None\nSize of \x1b[0;95mtrain_dataset \x1b[0m= 10\nSize of \x1b[0;95mtest_dataset \x1b[0m= 10, 20\nSize of \x1b[0;95mval_dataset \x1b[0m= 10\n\x1b[0;95mBatch size =\x1b[0m 5" self.assertEqual(dataset.__repr__(), repr)
def test_empty_dataset(self): opt = Options() opt.dataset_name = os.path.join(os.getcwd(), "test") opt.dataroot = os.path.join(os.getcwd(), "test") dataset = BaseDataset(opt) self.assertEqual(dataset.pre_transform, None) self.assertEqual(dataset.test_transform, None) self.assertEqual(dataset.train_transform, None) self.assertEqual(dataset.val_transform, None) self.assertEqual(dataset.train_dataset, None) self.assertEqual(dataset.test_dataset, None) self.assertEqual(dataset.val_dataset, None)
def run(model: BaseModel, dataset: BaseDataset, device, output_path): loaders = dataset.test_dataloaders predicted = {} for loader in loaders: loader.dataset.name with Ctq(loader) as tq_test_loader: for data in tq_test_loader: with torch.no_grad(): model.set_input(data, device) model.forward() predicted = { **predicted, **dataset.predict_original_samples(data, model.conv_type, model.get_output()) } save(output_path, predicted)