示例#1
0
def ensemble_translate(FLAGS):
    GlobalNames.USE_GPU = FLAGS.use_gpu

    config_path = os.path.abspath(FLAGS.config_path)

    with open(config_path.strip()) as f:
        configs = yaml.load(f)

    data_configs = configs['data_configs']
    model_configs = configs['model_configs']

    timer = Timer()
    # ================================================================================== #
    # Load Data

    INFO('Loading data...')
    timer.tic()

    # Generate target dictionary
    vocab_src = Vocabulary(**data_configs["vocabularies"][0])
    vocab_tgt = Vocabulary(**data_configs["vocabularies"][1])

    valid_dataset = TextLineDataset(data_path=FLAGS.source_path,
                                    vocabulary=vocab_src)

    valid_iterator = DataIterator(dataset=valid_dataset,
                                  batch_size=FLAGS.batch_size,
                                  use_bucket=True,
                                  buffer_size=100000,
                                  numbering=True)

    INFO('Done. Elapsed time {0}'.format(timer.toc()))

    # ================================================================================== #
    # Build Model & Sampler & Validation
    INFO('Building model...')
    timer.tic()

    nmt_models = []

    model_path = FLAGS.model_path

    for ii in range(len(model_path)):

        nmt_model = build_model(n_src_vocab=vocab_src.max_n_words,
                                n_tgt_vocab=vocab_tgt.max_n_words,
                                **model_configs)
        nmt_model.eval()
        INFO('Done. Elapsed time {0}'.format(timer.toc()))

        INFO('Reloading model parameters...')
        timer.tic()

        params = load_model_parameters(model_path[ii], map_location="cpu")

        nmt_model.load_state_dict(params)

        if GlobalNames.USE_GPU:
            nmt_model.cuda()

        nmt_models.append(nmt_model)

    INFO('Done. Elapsed time {0}'.format(timer.toc()))

    INFO('Begin...')
    result_numbers = []
    result = []
    n_words = 0

    timer.tic()

    infer_progress_bar = tqdm(total=len(valid_iterator),
                              desc=' - (Infer)  ',
                              unit="sents")

    valid_iter = valid_iterator.build_generator()
    for batch in valid_iter:

        numbers, seqs_x = batch

        batch_size_t = len(seqs_x)

        x = prepare_data(seqs_x=seqs_x, cuda=GlobalNames.USE_GPU)

        with torch.no_grad():
            word_ids = ensemble_beam_search(nmt_models=nmt_models,
                                            beam_size=FLAGS.beam_size,
                                            max_steps=FLAGS.max_steps,
                                            src_seqs=x,
                                            alpha=FLAGS.alpha)

        word_ids = word_ids.cpu().numpy().tolist()

        # Append result
        for sent_t in word_ids:
            sent_t = [[wid for wid in line if wid != PAD] for line in sent_t]
            result.append(sent_t)

            n_words += len(sent_t[0])

        infer_progress_bar.update(batch_size_t)

    infer_progress_bar.close()

    INFO('Done. Speed: {0:.2f} words/sec'.format(
        n_words / (timer.toc(return_seconds=True))))

    translation = []
    for sent in result:
        samples = []
        for trans in sent:
            sample = []
            for w in trans:
                if w == vocab_tgt.EOS:
                    break
                sample.append(vocab_tgt.id2token(w))
            samples.append(vocab_tgt.tokenizer.detokenize(sample))
        translation.append(samples)

    # resume the ordering
    origin_order = np.argsort(result_numbers).tolist()
    translation = [translation[ii] for ii in origin_order]

    keep_n = FLAGS.beam_size if FLAGS.keep_n <= 0 else min(
        FLAGS.beam_size, FLAGS.keep_n)
    outputs = ['%s.%d' % (FLAGS.saveto, i) for i in range(keep_n)]

    with batch_open(outputs, 'w') as handles:
        for trans in translation:
            for i in range(keep_n):
                if i < len(trans):
                    handles[i].write('%s\n' % trans[i])
                else:
                    handles[i].write('%s\n' % 'eos')
示例#2
0
文件: tune.py 项目: wangqi1996/njunmt
def ensemble_inference(valid_iterator,
                       models,
                       vocab_tgt: Vocabulary,
                       batch_size,
                       max_steps,
                       beam_size=5,
                       alpha=-1.0,
                       rank=0,
                       world_size=1,
                       using_numbering_iterator=True):
    for model in models:
        model.eval()

    trans_in_all_beams = [[] for _ in range(beam_size)]

    # assert keep_n_beams <= beam_size

    if using_numbering_iterator:
        numbers = []

    if rank == 0:
        infer_progress_bar = tqdm(total=len(valid_iterator),
                                  desc=' - (Infer)  ',
                                  unit="sents")
    else:
        infer_progress_bar = None

    valid_iter = valid_iterator.build_generator(batch_size=batch_size)

    for batch in valid_iter:

        seq_numbers = batch[0]

        if using_numbering_iterator:
            numbers += seq_numbers

        seqs_x = batch[1]

        if infer_progress_bar is not None:
            infer_progress_bar.update(len(seqs_x) * world_size)

        x = prepare_data(seqs_x, seqs_y=None, cuda=Constants.USE_GPU)

        with torch.no_grad():
            word_ids = ensemble_beam_search(nmt_models=models,
                                            beam_size=beam_size,
                                            max_steps=max_steps,
                                            src_seqs=x,
                                            alpha=alpha)

        word_ids = word_ids.cpu().numpy().tolist()

        # Append result
        for sent_t in word_ids:
            for ii, sent_ in enumerate(sent_t):
                sent_ = vocab_tgt.ids2sent(sent_)
                if sent_ == "":
                    sent_ = '%s' % vocab_tgt.id2token(vocab_tgt.eos)
                trans_in_all_beams[ii].append(sent_)

    if infer_progress_bar is not None:
        infer_progress_bar.close()

    if world_size > 1:
        if using_numbering_iterator:
            numbers = dist.all_gather_py_with_shared_fs(numbers)

        trans_in_all_beams = [
            combine_from_all_shards(trans) for trans in trans_in_all_beams
        ]

    if using_numbering_iterator:
        origin_order = np.argsort(numbers).tolist()
        trans_in_all_beams = [[trans[ii] for ii in origin_order]
                              for trans in trans_in_all_beams]

    return trans_in_all_beams