def Create_date_list(config): dwps = util.create_list_period(config["train_start"], config["train_end"], False) dwp_test = util.create_list_period(config["backtest_start"], config["backtest_end"], False) dwp, dtp = util.get_all_combination_date(dwps, 12) return dwp_test,dwp,dtp
def setUpClass(cls) -> None: # Generating data / params cls.list_period = utils.create_list_period(201601, 202012) cls.horizon = 6 cls.years_to_add = 3 cls.combination_date = utils.get_all_combination_date( cls.list_period, cls.horizon) # Reading test data for il cls.raw_master_il = pd.read_csv(os.path.join(DIR_TEST_DATA, 'raw_master_il.csv'), parse_dates=['date']) cls.all_sales_il = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_all_sales_il.pkl')) cls.forecast_il = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_extend_forecast_il.pkl')) cls.pre_forecast_correction_il = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_apply_forecast_correction_il.pkl')) cls.long_il = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_reformat_il.pkl')) # Reading test data for dc cls.raw_master_dc = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'raw_master_dc.pkl')) cls.all_sales_dc = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_all_sales_dc.pkl')) cls.forecast_dc = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_extend_forecast_dc.pkl')) cls.pre_forecast_correction_dc = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_apply_forecast_correction_dc.pkl')) cls.long_dc = pd.read_pickle( os.path.join(DIR_TEST_DATA, 'test_reformat_dc.pkl'))
feature_importance_df_final.to_csv('./data/feature_importance_all_df.csv') return resfinal if __name__ == '__main__': import src.forecaster.utilitaires as util import src.forecaster.diagnostic as diagnostic raw_master = pd.read_csv('./data/raw/raw_master_dc_20191126.csv') mod = Modeldc(raw_master) max_date_available = mod.all_sales.calendar_yearmonth.max() filter_date = min(201909, max_date_available) dwps = util.create_list_period(201701, filter_date, False) dwp, dtp = util.get_all_combination_date(dwps, 12) print("creating the main table") table_all_features = mod.create_all_features(dwp, dtp) # table_all_features = pd.read_csv("data/table_all_features_dc.csv") dwp_test = util.create_list_period(201804, 201909, False) # # model_config = ModelConfig( # model_name="GradientBoostingRegressor", # model_params={ # 'standard_scaling': False, # 'pca': 0, # 'loss': 'huber', # 'learning_rate': 0.01, # 'n_estimators': 500,