FD_predictions = LSTMIMO.predict(concat_input) FD_eval_df = create_evaluation_df(FD_predictions, test_inputs, HORIZON, y_scaler) preds, actuals = format_output(FD_eval_df) preds = preds[np.where(preds.index.hour == 0)[0][0]:][::24] actuals = actuals[np.where(actuals.index.hour == 0)[0][0]:][::24] full = actuals.merge(preds, how='inner', left_index=True, right_index=True, suffixes=('_actuals', '_preds')) full.to_csv('./results/' + dset + '/' + wandb.run.name + '_' + str(i) + '.csv') preds = flatten(preds.values.tolist()) actuals = flatten(actuals.values.tolist()) mae = validation(preds, actuals, 'MAE') mape = validation(preds, actuals, 'MAPE') rmse = validation(preds, actuals, 'RMSE') #print('rmse {}'.format(rmse)) metrics.loc[i] = pd.Series({ 'mae': mae, 'mape': mape, 'rmse': rmse, 'B': names[i] }) wandb.log({"mape": metrics.mape.mean()}) wandb.log({"rmse": metrics.rmse.mean()}) wandb.log({"mae": metrics.mae.mean()}) model_path = './models/' + dset + '_models/local/' + names[ i] + '_' + wandb.run.name save_model(LSTMIMO, model_path)
batch_size=BATCHSIZE, epochs=MAX_EPOCHS, validation_split=0.15, callbacks=[early_stopping, WandbCallback()], verbose=1) concat_input = tf.concat([test_inputs['X'], test_inputs['X2']], axis=2) FD_predictions = LSTMIMO.predict(concat_input) FD_eval_df = create_evaluation_df(FD_predictions, test_inputs, HORIZON, y_scaler) FD_eval_df.index = pd.to_datetime(FD_eval_df['timestamp']) FD_eval_df = FD_eval_df[np.where( FD_eval_df.index.hour == 0)[0][0]:][::24] FD_eval_df.to_csv('./results/' + dset + '/local/' + wandb.run.name + '_' + str(i) + '.csv') mae = validation(FD_eval_df['prediction'], FD_eval_df['actual'], 'MAE') mape = validation(FD_eval_df['prediction'], FD_eval_df['actual'], 'MAPE') rmse = validation(FD_eval_df['prediction'], FD_eval_df['actual'], 'RMSE') #print('rmse {}'.format(rmse)) metrics.loc[i] = pd.Series({ 'mae': mae, 'mape': mape, 'rmse': rmse, 'B': names[i] }) wandb.log({"mape": metrics.mape.mean()}) wandb.log({"rmse": metrics.rmse.mean()}) wandb.log({"mae": metrics.mae.mean()}) model_path = './models/' + dset + '_models/local/' + names[