def load_model(parameters): """ Load trained patch classifier """ if (parameters["device_type"] == "gpu") and torch.has_cudnn: device = torch.device("cuda:{}".format(parameters["gpu_number"])) else: device = torch.device("cpu") model = models.ModifiedDenseNet121(num_classes=parameters['number_of_classes']) model.load_from_path(parameters["initial_parameters"]) model = model.to(device) model.eval() return model, device
def load_model_and_produce_heatmaps(parameters): """ Loads trained patch classifier and generates heatmaps for all exams """ # set random seed at the beginning of program random.seed(parameters['seed']) if (parameters["device_type"] == "gpu") and torch.has_cudnn: device = torch.device("cuda:{}".format(parameters["gpu_number"])) else: device = torch.device("cpu") model = models.ModifiedDenseNet121(num_classes=parameters['number_of_classes']) model.load_from_path(parameters["initial_parameters"]) model = model.to(device) model.eval() # Load exam info exam_list = pickling.unpickle_from_file(parameters['data_file']) # Create heatmaps making_heatmap_with_large_minibatch_potential(parameters, model, exam_list, device)