示例#1
0
    def test_order_information(self):
        """
        Test ordering Sentences by MEAD score
        :return:
        """
        doc_id_1 = 'TST_ENG_20190101.0001'
        sentence_1 = 'Puppies love playing fetch.'
        sentence_2 = 'They all ran around with their tails wagging ' \
                     'and their tongues hanging out having loads of fun in the sun.'
        sentence_3 = "He loves playing so he liked to run around with the other dogs playing fetch."
        expected_info = [
            Sentence(sentence_1, 1, doc_id_1),
            Sentence(sentence_3, 3, doc_id_1),
            Sentence(sentence_2, 2, doc_id_1)
        ]

        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)
        generator = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                         self.args)
        generator.select_content(self.idf)
        generator.order_information()

        first_sentences = generator.content_selector.selected_content[:3]

        self.assertListEqual(expected_info, first_sentences)
示例#2
0
    def test_realize_content(self):
        """
        Test applying redundancy penalty during realize_content
        :return:
        """
        expected_content = "I took my small puppy to the dog park today.\n" \
                           "In a park somewhere, a bunch of puppies played fetch with their owners today.\n" \
                           "There were many bigger puppies but he didn't get in a fight with any of them, " \
                           "they just played together with their toys and chased each other.\n" \
                           "They all ran around with their tails wagging and their tongues hanging out having " \
                           "loads of fun in the sun.\n" \
                           "He loves playing so he liked to run around with the other dogs playing fetch.\n" \
                           "Puppies love playing fetch."

        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)

        generator = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                         self.args)
        generator.select_content(self.idf)
        generator.order_information()
        generator.content_selector.selected_content = generator.content_selector.selected_content
        realized_content = generator.realize_content()
        self.assertEqual(expected_content, realized_content)
示例#3
0
    def test_generate_summary(self):
        topics = {
            'PUP1A': [
                Document('TST_ENG_20190101.0001'),
                Document('TST_ENG_20190101.0002'),
                Document('TST20190201.0001'),
                Document('TST20190201.0002')
            ],
            'WAR2A': [
                Document('TST_ENG_20190301.0001'),
                Document('TST_ENG_20190301.0002'),
                Document('TST20190401.0001'),
                Document('TST20190401.0002')
            ]
        }
        WordMap.create_mapping()
        vec = Vectors()
        vec.create_freq_vectors(topics)
        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()

        for topic_id, documents in topics.items():
            summarizer = MeadSummaryGenerator(documents, MeadContentSelector(),
                                              self.args)
            summary = summarizer.generate_summary(idf)
            self.assertIsNot(summary, None)
示例#4
0
 def test_sentence_vector(self):
     s = self.topics.get(1)[1].sens[1]  # s1 is a Sentence object
     # s text: 'He loves playing so he liked to run around with the other dogs playing fetch.'
     id_of_playing = WordMap.id_of('playing')
     self.assertEqual(s.vector.getcol(id_of_playing).sum(), 1)
     for word in s.tokens:
         id_of_word = WordMap.id_of(word)
         self.assertGreater(s.vector.getcol(id_of_word).sum(), 0)
示例#5
0
 def test_melda_generate_summary(self):
     WordMap.word_set = self.w_set
     WordMap.create_mapping()
     Vectors().create_freq_vectors(self.topics)
     Vectors().create_term_doc_freq(self.topics)
     for topic_id, documents in self.topics.items():
         summarizer = MeldaSummaryGenerator(documents,
                                            MeldaContentSelector(),
                                            self.args)
         summary = summarizer.generate_summary(self.idf)
         self.assertIsNot(summary, None)
示例#6
0
    def test_document_topics(self):
        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_term_doc_freq(self.topics)
        selector = MeldaContentSelector()
        lda_model = selector.build_lda_model(self.doc_list, self.args.lda_topics)
        testtok = ['puppy', 'soldier', 'war', 'fetch']
        testsen = Vectors().create_term_sen_freq(testtok)
        document_topics = lda_model.get_document_topics(testsen, minimum_probability=0)
        topic_dist = [prob[1] for prob in document_topics]

        self.assertEqual(len(topic_dist), self.args.lda_topics)
        self.assertAlmostEquals(sum(topic_dist), 1, 2)
示例#7
0
    def test_get_lda_scores(self):
        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_term_doc_freq(self.topics)
        selector = MeldaContentSelector()
        lda_model = selector.build_lda_model(self.doc_list, self.args.lda_topics)

        sentence = self.doc_list[0].sens[0]
        selector.calculate_lda_scores([sentence], lda_model)
        lda_scores = sentence.lda_scores

        self.assertEqual(len(lda_scores), self.args.lda_topics)
        self.assertAlmostEqual(sum(lda_scores), 1, 2)
示例#8
0
    def test_get_top_n(self):
        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)
        Vectors().create_term_doc_freq(self.topics)
        selector = MeldaContentSelector()
        lda_model = selector.build_lda_model(self.doc_list, self.args.lda_topics)

        sentences = selector.calculate_mead_scores(self.doc_list, self.args, self.idf)
        sentences = selector.calculate_lda_scores(sentences, lda_model)
        sentences = selector.calculate_melda_scores(sentences)
        selector.select_top_n(sentences, self.args.lda_topics, 1)

        self.assertEqual(len(selector.selected_content), self.args.lda_topics)
示例#9
0
    def test_melda_info_ordering(self):
        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)
        Vectors().create_term_doc_freq(self.topics)
        summarizer = MeldaSummaryGenerator(self.doc_list,
                                           MeldaContentSelector(), self.args)
        content_selector = summarizer.select_content(self.idf)
        expected_len = len(content_selector)
        summarizer.order_information()

        actual_len = len(content_selector)

        self.assertEqual(expected_len, actual_len)
示例#10
0
    def test_create_mapping(self):

        Preprocessor.load_models()

        WordMap.word_set = set()
        WordMap.word_to_id = {}

        Document("TST_ENG_20190101.0001")
        Document("TST_ENG_20190101.0002")

        WordMap.create_mapping()
        mapping = WordMap.get_mapping()

        self.assertCountEqual(self.word_set, mapping.keys())  # each word in word_set got added to the dictionary
        self.assertEqual(len(mapping), len(set(mapping.items())))  # each id value in the dict is unique
示例#11
0
    def test_term_topics(self):
        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_term_doc_freq(self.topics)
        selector = MeldaContentSelector()
        lda_model = selector.build_lda_model(self.doc_list, self.args.lda_topics)

        puppy_topics = lda_model.get_term_topics(WordMap.id_of('puppy'), minimum_probability=0)
        war_topics = lda_model.get_term_topics(WordMap.id_of('war'), minimum_probability=0)
        puppy_dist = [prob[1] for prob in puppy_topics]
        enemy_dist = [prob[1] for prob in war_topics]

        puppy_war = puppy_dist[0] > enemy_dist[0] and puppy_dist[1] < enemy_dist[1]
        war_puppy = puppy_dist[0] < enemy_dist[0] and puppy_dist[1] > enemy_dist[1]

        self.assertTrue(puppy_war or war_puppy)
示例#12
0
    def get_idf_array(self):
        """
        Use external corpus to get IDF scores
        for cluster centroid calculations
        :return: numpy array of idf values
        """
        corpus = brown
        if self.args.corpus == 'R':
            corpus = reuters
        num_words = Vectors().num_unique_words
        n = len(corpus.fileids())  # number of documents in corpus
        docs_word_matrix = np.zeros([n, num_words])
        for doc_idx, doc_id in enumerate(corpus.fileids()):
            sentences = list(corpus.sents(doc_id))
            words_in_doc = set()
            for s in sentences:
                s = ' '.join(s)
                proc_s = Preprocessor.get_processed_tokens(Preprocessor.get_processed_sentence(s))
                if proc_s:
                    words_in_doc = words_in_doc.union(proc_s)
            for word in words_in_doc:
                word_idx = WordMap.id_of(word)
                if word_idx:
                    docs_word_matrix[doc_idx, word_idx] = 1

        docs_per_word = np.sum(docs_word_matrix, axis=0)
        self.idf_array = np.log10(np.divide(n, docs_per_word + 1))  # add one to avoid divide by zero error

        return self.idf_array
示例#13
0
    def create_term_doc_freq(self, topics):
        """
        create term freq on each doc over each topic
        :param topics:
        :return: set tdf to topic_list of [doc_list of (wordid, freq)]
                e.g.,[[(0, 1), (1, 2), (2, 1), (3, 1), (4, 1), (6, 5),  (9, 2), (10, 1), (11, 1)...],[...]]

        """
        for cluster in topics.values():
            for document in cluster:
                term_doc_freq_dict = {}
                for sentence in document.sens:

                    for word in sentence.tokenized():
                        word_id = WordMap.id_of(word)
                        if word_id is None:
                            warnings.warn('Word \'' + word + '\' not in WordMap', Warning)
                            continue
                        if word_id not in term_doc_freq_dict:
                            term_doc_freq_dict[word_id] = 0
                        term_doc_freq_dict[word_id] += 1
                term_doc_freq_list = []
                for word_id in sorted(term_doc_freq_dict):
                    term_doc_freq_list.append((word_id, term_doc_freq_dict[word_id]))

                document.set_tdf(term_doc_freq_list)
示例#14
0
 def create_freq_vectors(self, topics):
     """
     creates a frequency vector for each sentence in each document in each topic in topics; stores single vectors in
     relevant Sentence objects and per-document matrices in relevant Document objects
     :param topics: Dictionary {topic -> list of Documents}
     :return: None
     pre: WordMap.create_mapping has been called (should happen in run_summarization document loading)
     """
     for cluster in topics.values():
         for document in cluster:
             doc_vectors = dok_matrix((0, self.num_unique_words))
             for sentence in document.sens:
                 sentence_vector = dok_matrix((1, self.num_unique_words))
                 for word in sentence.tokenized():  # maybe check that sentence.tokenized() is the right thing here
                     word_id = WordMap.id_of(word)
                     if word_id is None:
                         warnings.warn('Word \'' + word + '\' not in WordMap', Warning)
                         warnings.warn('Sentence:' + sentence.raw_sentence, Warning)
                     else:
                         sentence_vector[0, word_id] += 1
                 # assign vector to sentence object
                 sentence.set_vector(sentence_vector)
                 # add sentence vector to document matrix
                 doc_vectors = vstack([doc_vectors, sentence_vector])
             # assign matrix to document
             document.set_vectors(doc_vectors)
示例#15
0
def load_documents_for_topics(topic_soup):
    """
    Load documents for each topic
    :param topic_soup:
    :return:
    """
    topics = {}
    for topic in topic_soup.find_all('topic'):
        documents = load_documents(topic)
        topics[topic['id']] = documents

    # At this point, all docs have been loaded and all unique words are stored in WordMap set
    # Need to trigger creation of mapping and of vectors
    WordMap.create_mapping()
    vec = Vectors()
    vec.create_freq_vectors(topics)  # do we need to have this here if we don't run mead based content selection
    vec.create_term_doc_freq(topics)

    return topics
    def get_centroid_score(self, sentence, centroid):
        """
        Get the centroid score for this sentence
        :param: sentence, centroid
        :return: float
        """
        centroid_score = 0
        for word in sentence.tokens:
            id = WordMap.id_of(word)
            centroid_score += centroid[id] if id is not None else 0

        # return centroid_score/(sentence.word_count() + 1)
        return centroid_score
示例#17
0
class VectorsTests(unittest.TestCase):

    Preprocessor.load_models()
    topics = {
        1:
        [Document('TST_ENG_20190101.0001'),
         Document('TST_ENG_20190101.0002')]
    }
    WordMap.create_mapping()
    mapping = WordMap.get_mapping()
    topic_one = topics.get(1)  # list of Documents

    def test_create_freq_vectors(self):
        Vectors().create_freq_vectors(self.topics)
        for doc_list in self.topics.values():
            for doc in doc_list:
                # check that there's a vector for each sentence

                doc_matrix_shape = doc.vectors.get_shape()
                expected_rows = 3
                self.assertEqual(doc_matrix_shape[0], expected_rows)

    def test_sentence_vector(self):
        s = self.topics.get(1)[1].sens[1]  # s1 is a Sentence object
        # s text: 'He loves playing so he liked to run around with the other dogs playing fetch.'
        id_of_playing = WordMap.id_of('playing')
        self.assertEqual(s.vector.getcol(id_of_playing).sum(), 1)
        for word in s.tokens:
            id_of_word = WordMap.id_of(word)
            self.assertGreater(s.vector.getcol(id_of_word).sum(), 0)

    def test_get_topic_matrix(self):
        # make sure all sentences from all topic docs make it into the matrix
        topic_one_matrix = Vectors().get_topic_matrix(self.topic_one)
        expected_num_sentences = 6
        self.assertEqual(expected_num_sentences,
                         topic_one_matrix.get_shape()[0])
示例#18
0
    def test_mead_summary_length(self):
        """
        Test length of summary is less than 100 words
        :return:
        """
        topics = {
            'PUP1A': [
                Document('TST_ENG_20190101.0001'),
                Document('TST_ENG_20190101.0002'),
                Document('TST20190201.0001'),
                Document('TST20190201.0002')
            ],
            'WAR2A': [
                Document('TST_ENG_20190301.0001'),
                Document('TST_ENG_20190301.0002'),
                Document('TST20190401.0001'),
                Document('TST20190401.0002')
            ]
        }
        WordMap.create_mapping()
        vec = Vectors()
        vec.create_freq_vectors(topics)
        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()
        max_length = 100

        for topic_id, documents in topics.items():
            generator = MeadSummaryGenerator(documents, MeadContentSelector(),
                                             self.args)
            generator.select_content(idf)
            generator.order_information()
            realized_content = generator.realize_content()
            realized_content = [
                w for w in realized_content.split(" ") if not " "
            ]
            content_length = len(realized_content)
            self.assertLessEqual(content_length, max_length)
示例#19
0
    def __init__(self, raw_sentence, sent_pos, doc_id=None):
        """
        initialize Sentence class with methods for plain/raw and tokenized sentence
        options, word count, position of sentence in document and document id
        :param raw_sentence:
        :param sent_pos:
        """
        self.raw_sentence = ' '.join(raw_sentence.rstrip().split())
        self.raw_sentence = Preprocessor.strip_beginning(self.raw_sentence)
        self.tokens = []

        self.processed = Preprocessor.get_processed_sentence(self.raw_sentence)
        self.__tokenize_sentence(self.processed)

        self.sent_pos = int(sent_pos)  # position of sentence in document
        self.doc_id = doc_id
        self.vector = []  # placeholder
        self.order_by = self.sent_pos
        self.c_score = self.p_score = self.f_score = self.mead_score = self.lda_scores = self.melda_scores = None
        self.compressed = self.raw_sentence

        # update global mapping of words to indices
        WordMap.add_words(
            self.tokens)  # make sure self.tokens is the right thing here
示例#20
0
    def test_get_idf_array(self):
        words = [
            "i", "eat", "cake", "is", "delicious", "puppies", "are", "cute",
            "cats", "furry", "bank", "company", "sugar", "dollar", "however",
            "say"
        ]
        # Must override WordMap dictionary for test
        WordMap.word_to_id = {
            'delicious': 0,
            'eat': 1,
            'furry': 2,
            'puppies': 3,
            'i': 4,
            'cats': 5,
            'are': 6,
            'is': 7,
            'cute': 8,
            'cake': 9,
            'bank': 10,
            'company': 11,
            'sugar': 12,
            'dollar': 13,
            'however': 14,
            'say': 15
        }

        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()

        scores = []
        for word in words:
            curr_score = idf[WordMap.id_of(word)]
            scores.append("{:.5f}".format(curr_score))

        expected_scores = [
            '2.69897', '0.80688', '1.49485', '2.69897', '2.69897', '2.69897',
            '2.69897', '1.92082', '2.69897', '2.69897', '1.04576', '0.65365',
            '1.44370', '0.98297', '0.24718', '0.10018'
        ]

        self.assertListEqual(scores, expected_scores, 5)
示例#21
0
    def create_term_sen_freq(self, sen):
        """
        create term freq on a tokenized sentence
        :param sent:
        :return:
        """
        term_doc_freq_dict = {}
        for tok in sen:
            word_id = WordMap.id_of(tok)
            if word_id is None:
                warnings.warn('Word \'' + tok + '\' not in WordMap', Warning)
                continue
            else:
                if word_id not in term_doc_freq_dict:
                    term_doc_freq_dict[word_id] = 0
                term_doc_freq_dict[word_id] += 1

        term_doc_freq_list = []
        for word_id in sorted(term_doc_freq_dict):
            term_doc_freq_list.append((word_id, term_doc_freq_dict[word_id]))

        return term_doc_freq_list
    def build_lda_model(self, documents, num_topics):
        """
        Build the LDA model
        :param documents: the list of documents
        :param num_topics: the number of topics to use
        :return: the LDA model
        """
        topic_tdf = []
        for doc in documents:
            topic_tdf.append(doc.tdf)

        lda_model = gensim.models.ldamodel.LdaModel(
            corpus=topic_tdf,
            id2word=WordMap.get_id2word_mapping(),
            num_topics=num_topics,
            random_state=0,
            update_every=1,
            chunksize=100,
            passes=10,
            alpha='auto',
            per_word_topics=True)

        return lda_model
示例#23
0
 def __init__(self):
     self.num_unique_words = len(WordMap.get_mapping())
示例#24
0
class MeadSummaryGeneratorTests(unittest.TestCase):
    """
    Tests for MeadSummaryGenerator
    """

    # variables used in multiple tests
    Preprocessor.load_models()
    doc_1 = Document("TST_ENG_20190101.0001")
    doc_2 = Document("TST_ENG_20190101.0002")
    doc_list = [doc_1, doc_2]
    topics = {'PUP1A': [doc_1, doc_2]}
    w_set = {
        'he', 'owner', 'i', 'play', 'big', 'chase', 'fetch', 'park', 'dog',
        'fun', 'toy', 'tongue', 'take', 'ran', 'in', 'sun', 'love',
        'somewhere', 'many', 'together', 'around', 'puppy', 'today', 'load',
        'fight', 'small', "n't", '-PRON-', 'wag', 'hang', 'loads', 'bunch',
        'get', 'playing', 'they', 'like', 'tail', 'run', 'there'
    }

    idf = [
        4.032940937780854, 2.420157081061118, 1.3730247377110034,
        2.8868129021026157, 2.7776684326775474, 3.7319109421168726,
        3.25478968739721, 2.7107216430469343, 3.7319109421168726,
        4.032940937780854, 3.3339709334448346, 4.032940937780854,
        1.9257309681329853, 2.5705429398818973, 0.21458305982249878,
        2.3608430798451363, 3.5558196830611912, 3.3339709334448346,
        1.5660733174267443, 2.024340766018936, 1.2476111027700865,
        4.032940937780854, 0.9959130580250786, 3.7319109421168726,
        2.5415792439465807, 1.7107216430469343, 4.032940937780854,
        3.4308809464528913, 4.032940937780854, 3.4308809464528913,
        3.5558196830611912, 3.5558196830611912, 4.032940937780854,
        1.734087861371147, 3.0786984283415286, 0.9055121599292547,
        3.5558196830611912, 3.5558196830611912, 1.9876179589941962
    ]

    args = parse_args(['test_data/test_topics.xml', 'test'])
    WordMap.reset()

    def test_order_information(self):
        """
        Test ordering Sentences by MEAD score
        :return:
        """
        doc_id_1 = 'TST_ENG_20190101.0001'
        sentence_1 = 'Puppies love playing fetch.'
        sentence_2 = 'They all ran around with their tails wagging ' \
                     'and their tongues hanging out having loads of fun in the sun.'
        sentence_3 = "He loves playing so he liked to run around with the other dogs playing fetch."
        expected_info = [
            Sentence(sentence_1, 1, doc_id_1),
            Sentence(sentence_3, 3, doc_id_1),
            Sentence(sentence_2, 2, doc_id_1)
        ]

        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)
        generator = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                         self.args)
        generator.select_content(self.idf)
        generator.order_information()

        first_sentences = generator.content_selector.selected_content[:3]

        self.assertListEqual(expected_info, first_sentences)

    def test_realize_content(self):
        """
        Test applying redundancy penalty during realize_content
        :return:
        """
        expected_content = "I took my small puppy to the dog park today.\n" \
                           "In a park somewhere, a bunch of puppies played fetch with their owners today.\n" \
                           "There were many bigger puppies but he didn't get in a fight with any of them, " \
                           "they just played together with their toys and chased each other.\n" \
                           "They all ran around with their tails wagging and their tongues hanging out having " \
                           "loads of fun in the sun.\n" \
                           "He loves playing so he liked to run around with the other dogs playing fetch.\n" \
                           "Puppies love playing fetch."

        WordMap.word_set = self.w_set
        WordMap.create_mapping()
        Vectors().create_freq_vectors(self.topics)

        generator = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                         self.args)
        generator.select_content(self.idf)
        generator.order_information()
        generator.content_selector.selected_content = generator.content_selector.selected_content
        realized_content = generator.realize_content()
        self.assertEqual(expected_content, realized_content)

    def test_get_idf_array(self):
        words = [
            "i", "eat", "cake", "is", "delicious", "puppies", "are", "cute",
            "cats", "furry", "bank", "company", "sugar", "dollar", "however",
            "say"
        ]
        # Must override WordMap dictionary for test
        WordMap.word_to_id = {
            'delicious': 0,
            'eat': 1,
            'furry': 2,
            'puppies': 3,
            'i': 4,
            'cats': 5,
            'are': 6,
            'is': 7,
            'cute': 8,
            'cake': 9,
            'bank': 10,
            'company': 11,
            'sugar': 12,
            'dollar': 13,
            'however': 14,
            'say': 15
        }

        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()

        scores = []
        for word in words:
            curr_score = idf[WordMap.id_of(word)]
            scores.append("{:.5f}".format(curr_score))

        expected_scores = [
            '2.69897', '0.80688', '1.49485', '2.69897', '2.69897', '2.69897',
            '2.69897', '1.92082', '2.69897', '2.69897', '1.04576', '0.65365',
            '1.44370', '0.98297', '0.24718', '0.10018'
        ]

        self.assertListEqual(scores, expected_scores, 5)

    def test_mead_summary_length(self):
        """
        Test length of summary is less than 100 words
        :return:
        """
        topics = {
            'PUP1A': [
                Document('TST_ENG_20190101.0001'),
                Document('TST_ENG_20190101.0002'),
                Document('TST20190201.0001'),
                Document('TST20190201.0002')
            ],
            'WAR2A': [
                Document('TST_ENG_20190301.0001'),
                Document('TST_ENG_20190301.0002'),
                Document('TST20190401.0001'),
                Document('TST20190401.0002')
            ]
        }
        WordMap.create_mapping()
        vec = Vectors()
        vec.create_freq_vectors(topics)
        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()
        max_length = 100

        for topic_id, documents in topics.items():
            generator = MeadSummaryGenerator(documents, MeadContentSelector(),
                                             self.args)
            generator.select_content(idf)
            generator.order_information()
            realized_content = generator.realize_content()
            realized_content = [
                w for w in realized_content.split(" ") if not " "
            ]
            content_length = len(realized_content)
            self.assertLessEqual(content_length, max_length)

    def test_generate_summary(self):
        topics = {
            'PUP1A': [
                Document('TST_ENG_20190101.0001'),
                Document('TST_ENG_20190101.0002'),
                Document('TST20190201.0001'),
                Document('TST20190201.0002')
            ],
            'WAR2A': [
                Document('TST_ENG_20190301.0001'),
                Document('TST_ENG_20190301.0002'),
                Document('TST20190401.0001'),
                Document('TST20190401.0002')
            ]
        }
        WordMap.create_mapping()
        vec = Vectors()
        vec.create_freq_vectors(topics)
        idf = MeadSummaryGenerator(self.doc_list, MeadContentSelector(),
                                   self.args).get_idf_array()

        for topic_id, documents in topics.items():
            summarizer = MeadSummaryGenerator(documents, MeadContentSelector(),
                                              self.args)
            summary = summarizer.generate_summary(idf)
            self.assertIsNot(summary, None)