if (cmd_args.gpu != 0) or (cmd_args.force_set_gpu is True): torch.cuda.set_device(cmd_args.gpu) if cmd_args.model_type == ModelTypes.COMPRESSION: args = mse_lpips_args elif cmd_args.model_type == ModelTypes.COMPRESSION_GAN: args = hific_args start_time = time.time() device = utils.get_device() # Override default arguments from config file with provided command line arguments dictify = lambda x: dict((n, getattr(x, n)) for n in dir(x) if not (n.startswith('__') or 'logger' in n)) args_d, cmd_args_d = dictify(args), vars(cmd_args) args_d.update(cmd_args_d) args = utils.Struct(**args_d) args = utils.setup_generic_signature(args, special_info=args.model_type) args.target_rate = args.target_rate_map[args.regime] args.lambda_A = args.lambda_A_map[args.regime] args.n_steps = int(args.n_steps) storage = defaultdict(list) storage_test = defaultdict(list) logger = utils.logger_setup(logpath=os.path.join(args.snapshot, 'logs'), filepath=os.path.abspath(__file__)) if args.warmstart is True: assert args.warmstart_ckpt is not None, 'Must provide checkpoint to previously trained AE/HP model.' logger.info('Warmstarting discriminator/generator from autoencoder/hyperprior model.') if args.model_type != ModelTypes.COMPRESSION_GAN: logger.warning('Should warmstart compression-gan model.') args, model, optimizers = utils.load_model(args.warmstart_ckpt, logger, device,
def compress_and_decompress(args): # Reproducibility make_deterministic() perceptual_loss_fn = ps.PerceptualLoss(model='net-lin', net='alex', use_gpu=torch.cuda.is_available()) # Load model device = utils.get_device() logger = utils.logger_setup(logpath=os.path.join(args.image_dir, 'logs'), filepath=os.path.abspath(__file__)) loaded_args, model, _ = utils.load_model(args.ckpt_path, logger, device, model_mode=ModelModes.EVALUATION, current_args_d=None, prediction=True, strict=False) # Override current arguments with recorded dictify = lambda x: dict((n, getattr(x, n)) for n in dir(x) if not (n.startswith('__') or 'logger' in n)) loaded_args_d, args_d = dictify(loaded_args), dictify(args) loaded_args_d.update(args_d) args = utils.Struct(**loaded_args_d) logger.info(loaded_args_d) # Build probability tables logger.info('Building hyperprior probability tables...') model.Hyperprior.hyperprior_entropy_model.build_tables() logger.info('All tables built.') eval_loader = datasets.get_dataloaders('evaluation', root=args.image_dir, batch_size=args.batch_size, logger=logger, shuffle=False, normalize=args.normalize_input_image) n, N = 0, len(eval_loader.dataset) input_filenames_total = list() output_filenames_total = list() bpp_total, q_bpp_total, LPIPS_total = torch.Tensor(N), torch.Tensor(N), torch.Tensor(N) utils.makedirs(args.output_dir) logger.info('Starting compression...') start_time = time.time() with torch.no_grad(): for idx, (data, bpp, filenames) in enumerate(tqdm(eval_loader), 0): data = data.to(device, dtype=torch.float) B = data.size(0) input_filenames_total.extend(filenames) if args.reconstruct is True: # Reconstruction without compression reconstruction, q_bpp = model(data, writeout=False) else: # Perform entropy coding compressed_output = model.compress(data) if args.save is True: assert B == 1, 'Currently only supports saving single images.' compression_utils.save_compressed_format(compressed_output, out_path=os.path.join(args.output_dir, f"{filenames[0]}_compressed.hfc")) reconstruction = model.decompress(compressed_output) q_bpp = compressed_output.total_bpp if args.normalize_input_image is True: # [-1., 1.] -> [0., 1.] data = (data + 1.) / 2. perceptual_loss = perceptual_loss_fn.forward(reconstruction, data, normalize=True) for subidx in range(reconstruction.shape[0]): if B > 1: q_bpp_per_im = float(q_bpp.cpu().numpy()[subidx]) else: q_bpp_per_im = float(q_bpp.item()) if type(q_bpp) == torch.Tensor else float(q_bpp) fname = os.path.join(args.output_dir, "{}_RECON_{:.3f}bpp.png".format(filenames[subidx], q_bpp_per_im)) torchvision.utils.save_image(reconstruction[subidx], fname, normalize=True) output_filenames_total.append(fname) bpp_total[n:n + B] = bpp.data q_bpp_total[n:n + B] = q_bpp.data if type(q_bpp) == torch.Tensor else q_bpp LPIPS_total[n:n + B] = perceptual_loss.data n += B df = pd.DataFrame([input_filenames_total, output_filenames_total]).T df.columns = ['input_filename', 'output_filename'] df['bpp_original'] = bpp_total.cpu().numpy() df['q_bpp'] = q_bpp_total.cpu().numpy() df['LPIPS'] = LPIPS_total.cpu().numpy() df_path = os.path.join(args.output_dir, 'compression_metrics.h5') df.to_hdf(df_path, key='df') pprint(df) logger.info('Complete. Reconstructions saved to {}. Output statistics saved to {}'.format(args.output_dir, df_path)) delta_t = time.time() - start_time logger.info('Time elapsed: {:.3f} s'.format(delta_t)) logger.info('Rate: {:.3f} Images / s:'.format(float(N) / delta_t))