示例#1
0
def visual_test(epoch):
    print("===> Running visual test...")
    for i, tup in enumerate(visual_test_set):
        result = interpolate(model, load_img(tup[0]), load_img(tup[2]))
        result = pil_to_tensor(result)
        tag = 'data/visual_test_{}'.format(i)
        board_writer.add_image(tag, result, epoch)
示例#2
0
def test_metrics(model, video_path=None, frames=None, output_folder=None):

    if video_path is not None and frames is None:
        frames, _ = extract_frames(video_path)

    total_ssim = 0
    total_psnr = 0
    stride = 30
    iters = 1 + (len(frames) - 3) // stride

    triplets = []
    for i in range(iters):
        tup = (frames[i * stride], frames[i * stride + 1],
               frames[i * stride + 2])
        triplets.append(tup)

    iters = len(triplets)

    for i in range(iters):
        x1, gt, x2 = triplets[i]
        pred = interpolate(model, x1, x2)
        if output_folder is not None:
            frame_path = join(output_folder, f'wiz_{i}.jpg')
            pred.save(frame_path)
        gt = pil_to_tensor(gt)
        pred = pil_to_tensor(pred)
        total_ssim += ssim(pred, gt).item()
        total_psnr += psnr(pred, gt).item()
        print(f'#{i+1}/{iters} done')

    avg_ssim = total_ssim / iters
    avg_psnr = total_psnr / iters

    print(f'avg_ssim: {avg_ssim}, avg_psnr: {avg_psnr}')
示例#3
0
文件: main.py 项目: ColaColin/sepconv
def generate_parallax_view(torchModel, t, cam_interval, cam_views, netmode):
    """
    cam_views is expected to be an array of pil images
    returns an array of pil images
    """

    if netmode == "2to1":
        output = []
        for w in range(1, t + 1):
            if (w - 1) % cam_interval == 0:
                output.append(cam_views[(w - 1) // cam_interval])
            else:
                output.append(None)

        while cam_interval > 1:
            r_dot = cam_interval // 2
            for w in range(1, t - cam_interval + 1, cam_interval):
                output[w + r_dot - 1] = interpolate(
                    torchModel, output[w - 1], output[w + cam_interval - 1])
            cam_interval = r_dot

        return output
    else:
        result = []
        seq_len = cam_interval * 2 + 1

        for iv in range(0, len(cam_views) - 2, 2):
            result.append(cam_views[iv])
            interpolations = interpolate3toN(torchModel, cam_views[iv],
                                             cam_views[iv + 1],
                                             cam_views[iv + 2], seq_len)
            for idx, interpolation in enumerate(interpolations):
                result.append(interpolation)
                if idx == cam_interval - 2:
                    result.append(cam_views[iv + 1])
        result.append(cam_views[-1])
        return result
示例#4
0
def test_on_validation_set(model, validation_set=None):

    if validation_set is None:
        validation_set = get_validation_set()

    total_ssim = 0
    total_psnr = 0
    iters = len(validation_set.tuples)

    crop = CenterCrop(config.CROP_SIZE)

    for i, tup in enumerate(validation_set.tuples):
        x1, gt, x2, = [crop(load_img(p)) for p in tup]
        pred = interpolate(model, x1, x2)
        gt = pil_to_tensor(gt)
        pred = pil_to_tensor(pred)
        total_ssim += ssim(pred, gt).item()
        total_psnr += psnr(pred, gt).item()
        print(f'#{i+1} done')

    avg_ssim = total_ssim / iters
    avg_psnr = total_psnr / iters

    print(f'avg_ssim: {avg_ssim}, avg_psnr: {avg_psnr}')
示例#5
0
 def interpolate(self, *args):
     return interpol.interpolate(self, *args)