示例#1
0
def replay_prediction(replay_job: Job, training_initial_job: Job,
                      trace_id) -> list:
    """The function create a set with timestamps of events, then create a list of requests
        simulating the log in the time passing
        :param trace_id:
        :param replay_job: job dictionary
        :param training_initial_job: job dictionary
        :return: List of requests
    """

    split = replay_job.split
    log = get_log(split.train_log)
    requests_list = list()
    eventlog = EventLog()
    trace = log[int(trace_id)]
    for key in log.attributes.keys():
        eventlog.attributes[key] = log.attributes[key]
    for index in range(len(trace)):
        new_trace = Trace(trace[0:index])
        for key in trace.attributes:
            new_trace.attributes[key] = trace.attributes[key]
        eventlog.append(new_trace)
    replay_job.case_id = trace_id
    replay_job.event_number = len(trace)
    replay_job.save()
    try:
        logger.error("Sending request for replay_prediction task.")
        r = requests.post(
            url="http://127.0.0.1:8000/runtime/replay_prediction/",
            data=export_log_as_string(eventlog),
            params={
                'jobId': replay_job.id,
                'training_job': training_initial_job.id
            },
            headers={
                'Content-Type': 'text/plain',
                'charset': 'UTF-8'
            })
        requests_list.append(str(r))
    except Exception as e:
        requests_list.append(str(e))
        logger.warning(str(e))

    return requests_list
示例#2
0
def replay_core(replay_job: Job, training_initial_job: Job) -> list:
    """The function create a set with timestamps of events, then create a list of requests
        simulating the log in the time passing

        :param replay_job: job dictionary
        :param training_initial_job: job dictionary
        :return: List of requests
    """

    split = replay_job.split
    log = get_log(split.train_log)
    requests_list = list()

    eventlog = EventLog()
    for key in log.attributes.keys():
        eventlog.attributes[key] = log.attributes[key]
    for trace in log:
        new_trace = Trace(trace)
        for key in trace.attributes:
            new_trace.attributes[key] = trace.attributes[key]
        eventlog.append(new_trace)

    times = sorted(
        set([event['time:timestamp'] for trace in eventlog
             for event in trace]))

    for t in times[2::int((len(times) - 2) / 5)]:
        filtered_eventlog = timestamp_filter.apply_events(
            eventlog, times[0].replace(tzinfo=None), t.replace(tzinfo=None))
        trace_list = list()
        event_number = dict()
        for trace in filtered_eventlog:
            trace_list.append(trace.attributes['concept:name'])
            event_number[trace.attributes['concept:name']] = len(trace)
        replay_job.case_id = trace_list
        replay_job.event_number = event_number
        replay_job.save()
        try:  #TODO check logger usage
            logger.info("Sending request for replay_prediction task.")
            r = requests.post(
                url="http://server:8000/runtime/replay_prediction/",
                data=export_log_as_string(filtered_eventlog),
                params={
                    'jobId': replay_job.id,
                    'training_job': training_initial_job.id
                },
                headers={
                    'Content-Type': 'text/plain',
                    'charset': 'UTF-8'
                })
            requests_list.append(str(r))
        except Exception as e:
            requests_list.append(str(e))
            logger.warning(str(e))

    training_log, test_log, additional_columns = get_train_test_log(
        replay_job.split)
    training_df, _ = encode_label_logs(training_log,
                                       test_log,
                                       replay_job,
                                       additional_columns=additional_columns)

    gold_values = dict(zip(training_df['trace_id'], training_df['label']))
    parent_id = replay_job.id
    # final_job = duplicate_orm_row(replay_job)  #todo: replace with simple CREATE
    final_job = Job.objects.create(
        created_date=replay_job.created_date,
        modified_date=replay_job.modified_date,
        error=replay_job.error,
        status=replay_job.status,
        type=replay_job.type,
        create_models=replay_job.create_models,
        case_id=replay_job.case_id,
        event_number=replay_job.event_number,
        gold_value=replay_job.gold_value,
        results=replay_job.results,
        parent_job=replay_job.parent_job,
        split=replay_job.split,
        encoding=replay_job.encoding,
        labelling=replay_job.labelling,
        clustering=replay_job.clustering,
        predictive_model=replay_job.predictive_model,
        evaluation=replay_job.evaluation,
        hyperparameter_optimizer=replay_job.hyperparameter_optimizer,
        incremental_train=replay_job.incremental_train)
    final_job.parent_job = Job.objects.filter(pk=parent_id)[0]
    final_job.gold_value = gold_values
    final_job.type = JobTypes.REPLAY_PREDICT.value
    final_job.save()
    return requests_list