def __init__(self, in_channels): super().__init__() self.mnBtchStdDv = layers.MinibatchStdDev() self.conv0 = layers._equalized_conv2d(in_channels + 1, in_channels, (1, 1)) self.conv1 = layers._equalized_conv2d(in_channels, in_channels, (3, 3), padding=(1, 1)) self.conv2 = layers._equalized_conv2d(in_channels, 1, (1, 1)) self.lrelu = nn.LeakyReLU(0.2)
def __init__(self, in_channels, out_channels, scale_factor): super().__init__() self.downsampling = nn.MaxPool2d(scale_factor) self.conv1 = layers._equalized_deconv2d(1, in_channels, (1, 1)) self.conv2 = layers._equalized_conv2d(in_channels, in_channels, (3, 3), padding=(1, 1)) self.conv3 = layers._equalized_conv2d(in_channels, out_channels, (1, 1)) self.lrelu = nn.LeakyReLU(0.2)
def __init__(self, in_channels, out_channels, scale_factor): super().__init__() self.upsampling = nn.UpsamplingNearest2d(scale_factor=scale_factor) self.conv1 = layers._equalized_conv2d(in_channels, out_channels, (3, 3), padding=(1, 1)) self.conv2 = layers._equalized_conv2d(out_channels, out_channels, (3, 3), padding=(1, 1)) self.pixNorm = layers.PixelwiseNorm() self.lrelu = nn.LeakyReLU(0.2)
def __init__(self, **kwargs): super().__init__() self.initBlock = InitGenConvBlock(512, 256) self.block1 = UpsamplingConvBlock(256, 256, 2) self.block2 = UpsamplingConvBlock(256, 128, 1) self.block3 = UpsamplingConvBlock(128, 128, 1) self.block4 = UpsamplingConvBlock(128, 64, 1) self.block5 = UpsamplingConvBlock(64, 64, 2) self.block6 = UpsamplingConvBlock(64, 32, 1) self.block7 = UpsamplingConvBlock(32, 32, 1) self.block8 = UpsamplingConvBlock(32, 16, 1) self.initOut = layers._equalized_conv2d(256, 1, (1, 1), bias=True) self.block4Out = layers._equalized_conv2d(128, 1, (1, 1), bias=True) self.block8Out = layers._equalized_conv2d(16, 1, (1, 1), bias=True)