示例#1
0
def eval_lenet():

    context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)

    network = LeNet5(config.num_classes)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    # repeat_size = config.epoch_size
    net_opt = nn.Momentum(network.trainable_params(), config.lr, config.momentum)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    print("============== Starting Testing ==============")
    param_dict = load_checkpoint(ckpt_path)
    load_param_into_net(network, param_dict)
    ds_eval = create_dataset(os.path.join(config.data_path, "test"),
                             config.batch_size,
                             1)
    if ds_eval.get_dataset_size() == 0:
        raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")

    acc = model.eval(ds_eval)
    print("============== {} ==============".format(acc))
示例#2
0
def train_lenet():

    context.set_context(mode=context.GRAPH_MODE,
                        device_target=config.device_target)
    ds_train = create_dataset(os.path.join(config.data_path, "train"),
                              config.batch_size)
    if ds_train.get_dataset_size() == 0:
        raise ValueError(
            "Please check dataset size > 0 and batch_size <= dataset size")

    network = LeNet5(config.num_classes)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), config.lr,
                          config.momentum)
    time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
    config_ck = CheckpointConfig(
        save_checkpoint_steps=config.save_checkpoint_steps,
        keep_checkpoint_max=config.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
                                 directory=config.checkpoint_path,
                                 config=config_ck)

    if config.device_target != "Ascend":
        model = Model(network,
                      net_loss,
                      net_opt,
                      metrics={"Accuracy": Accuracy()})
    else:
        model = Model(network,
                      net_loss,
                      net_opt,
                      metrics={"Accuracy": Accuracy()},
                      amp_level="O2")

    print("============== Starting Training ==============")
    model.train(config.epoch_size,
                ds_train,
                callbacks=[time_cb, ckpoint_cb,
                           LossMonitor()])
示例#3
0
    parser.add_argument('--ckpt_path',
                        type=str,
                        default="",
                        help='if mode is test, must provide\
                        path where the trained ckpt file')
    parser.add_argument('--dataset_sink_mode',
                        type=bool,
                        default=False,
                        help='dataset_sink_mode is False or True')

    args = parser.parse_args()

    context.set_context(mode=context.GRAPH_MODE,
                        device_target=args.device_target)

    network = LeNet5(cfg.num_classes)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False,
                                                sparse=True,
                                                reduction="mean")
    repeat_size = cfg.epoch_size
    net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
    config_ck = CheckpointConfig(
        save_checkpoint_steps=cfg.save_checkpoint_steps,
        keep_checkpoint_max=cfg.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})

    print("============== Starting Testing ==============")
    param_dict = load_checkpoint(args.ckpt_path)
    load_param_into_net(network, param_dict)
    ds_eval = create_dataset(os.path.join(args.data_path, "test"),
示例#4
0
"""
import mindspore.nn as nn
from mindspore import context, Model
from mindspore.train.callback import LossMonitor
from mindspore.nn.metrics import Accuracy
from src.lenet import LeNet5
from src.datasets import create_dataset


if __name__ == "__main__":

    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

    ds_train = create_dataset("./datasets/MNIST_Data/train", 32)
    ds_eval = create_dataset("./datasets/MNIST_Data/test", 32)
    # Initialize network
    network = LeNet5(10)

    # Define Loss and Optimizer
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)
    # amp_leval=O2 in GPU, amp_leval=O3 in Ascend, O0 is without mixed precision
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}, amp_level="O2")

    # Run training
    model.train(epoch=1, callbacks=[LossMonitor()], train_dataset=ds_train)

    # Run training
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    print("====Accuracy====:", acc)
def lenet(*args, **kwargs):
    return LeNet5(*args, **kwargs)
示例#6
0
"""
Copyright (R) @huawei.com, all rights reserved
-*- coding:utf-8 -*-
CREATED:  2021-01-20 20:12:13
MODIFIED: 2021-01-29 14:04:45
"""
from mindspore.train.serialization import load_checkpoint, save_checkpoint, export
from src.lenet import LeNet5
import numpy as np
from mindspore import Tensor
network = LeNet5()
load_checkpoint("./checkpoint_lenet-1_1875.ckpt", network)
input_data = np.random.uniform(0.0, 1.0, size = [1, 1, 32, 32]).astype(np.float32)
export(network, Tensor(input_data), file_name = './mnist', file_format = 'AIR') 
示例#7
0
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
from src.lenet import LeNet5

if os.path.exists(config.data_path_local):
    ckpt_file = config.ckpt_path_local
else:
    ckpt_file = os.path.join(config.data_path, 'checkpoint_lenet-10_1875.ckpt')

context.set_context(mode=context.GRAPH_MODE,
                    device_target=config.device_target)
if config.device_target == "Ascend":
    context.set_context(device_id=get_device_id())

if __name__ == "__main__":

    # define fusion network
    network = LeNet5(config.num_classes)
    # load network checkpoint
    param_dict = load_checkpoint(ckpt_file)
    load_param_into_net(network, param_dict)

    # export network
    inputs = Tensor(
        np.ones(
            [config.batch_size, 1, config.image_height, config.image_width]),
        mindspore.float32)
    export(network,
           inputs,
           file_name=config.file_name,
           file_format=config.file_format)