def run(turn, stf_info=None, name="", filename="log_wifi.txt"): stf = False device_params = {} # path to save logs path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(path, "..", "..", "qa", "reports", "") # instantiate logger to save a report file logger = Logger(filename, path, name) # initiate connection to device(s) controller = PhoneControl() # if a serial was received, run test only for that single serial if stf_info is not None: serials = [stf_info['remote_serial']] device_params = utils.get_device_data(stf_info['device']) stf = True else: # read the serials serials = controller.read_serials() for i in range(len(serials)): logger.write_log(" Device {} = {}".format(i+1, serials)) # init device with serial controller.init_device(serials[i]) # get the device parameters from the device version json if not stf: device_params = utils.get_device_data(serials[i]) logger.write_log("Script Turn Wifi " + turn + " ---------") try: action(turn, logger, controller, device_params) time.sleep(3) except Exception as ex: logger.error_log(ex.message)
def run_framework(): cwd_path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(cwd_path, "qa", "reports", "") logger = Logger("logger_suite.txt", path) # here all the suites specified will be ran, to execute all test cases # Wifi Suite WifiSuite.run_suite() # Dialer Suite DialerSuite.run_suite() # Calculator Suite CalculatorSuite.run_suite() # Twilio Suite twilio.run_suite() logger.end_suit()
def main(): """ Метод запускает процедуру проверки веток на соответствие условиям удаления/оповещения и выполнении действий Возвращает void """ logger = Logger(config.LOG_FILE) logger.Write("Start") branch_handler = BranchHandler() branch_handler.Handle() logger.Write("Stop") logger.Close()
def run(filename, path): logger = Logger(filename, path) controller = PhoneControl(3) serial = controller.read_serial() logger.write_log("1st Device on List = {}".format(serial)) controller.init_device() logger.write_log("Script Turn Wifi On---------") try: action(logger, controller) time.sleep(3) except Exception as ex: logger.error_log(ex.message)
def run(number_to=None, number_from=None, filename="log_twilio.txt"): # path to save logs path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(path, "..", "..", "qa", "reports", "") # instantiate logger to save a report file logger = Logger(filename, path) logger.write_log("Script Twilio Voice Mail ---------") try: action(logger, number_to, number_from) except Exception as ex: logger.end_log(ex.message)
def prefetch_test(opt): os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str Dataset = dataset_factory[opt.dataset] opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) Logger(opt) Detector = detector_factory[opt.task] # split = 'val'if not opt.trainval else 'test' detector = Detector(opt) datasets = build_dataset(Dataset, opt, is_train=False) datasets = datasets[0] data_loader = torch.utils.data.DataLoader(PrefetchDataset( opt, datasets, detector.pre_process), batch_size=1, shuffle=False, num_workers=0, pin_memory=True) results = {} num_iters = len(datasets) bar = Bar('{}'.format(opt.exp_id), max=num_iters) time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge'] avg_time_stats = {t: AverageMeter() for t in time_stats} for ind, (img_id, pre_processed_images) in enumerate(data_loader): ret = detector.run(pre_processed_images) results[img_id.numpy().astype(np.int32)[0]] = ret['results'] Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format( ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td) for t in avg_time_stats: avg_time_stats[t].update(ret[t]) Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format( t, tm=avg_time_stats[t]) bar.next() bar.finish() for t in avg_time_stats: print('|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format( t, tm=avg_time_stats[t])) datasets.run_eval(results, opt.save_dir)
def run(turn, filename="log_wifi.txt"): # path to save logs path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(path, "..", "..", "qa", "reports", "") # instantiate logger to save a report file logger = Logger(filename, path) # initiate connection to device(s) controller = PhoneControl() # read the serials serials = controller.read_serials() for i in range(len(serials)): logger.write_log(" Device {} = {}".format(i + 1, serials)) # init device with serial controller.init_device(serials[i]) # get the device parameters from the device version dictionary device_params = utils.get_device_data(serials[i]) logger.write_log("Script Turn Wifi " + turn + " ---------") try: action(turn, logger, controller, device_params) time.sleep(3) except Exception as ex: logger.error_log(ex.message)
def test(opt): os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str Dataset = dataset_factory[opt.dataset] opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) Logger(opt) Detector = detector_factory[opt.task] split = 'val' if not opt.trainval else 'test' dataset = Dataset(opt, split) detector = Detector(opt) results = {} num_iters = len(dataset) bar = Bar('{}'.format(opt.exp_id), max=num_iters) time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge'] avg_time_stats = {t: AverageMeter() for t in time_stats} for ind in range(num_iters): img_id = dataset.images[ind] img_info = dataset.coco.loadImgs(ids=[img_id])[0] img_path = os.path.join(dataset.img_dir, img_info['file_name']) if opt.task == 'ddd': ret = detector.run(img_path, img_info['calib']) else: ret = detector.run(img_path) results[img_id] = ret['results'] Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format( ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td) for t in avg_time_stats: avg_time_stats[t].update(ret[t]) Bar.suffix = Bar.suffix + '|{} {:.3f} '.format( t, avg_time_stats[t].avg) bar.next() bar.finish() dataset.run_eval(results, opt.save_dir)
def run(a, op, b, filename="log_calculator.txt"): # path to save logs cwd_path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(cwd_path, "..", "..", "qa", "reports", "") logger = Logger(filename, path) controller = PhoneControl(1) serials = controller.read_serials() for i in range(len(serials)): logger.write_log(" Device {} = {}".format(i + 1, serials)) controller.init_device(serials[i]) device_params = utils.get_device_data(serials[i]) logger.write_log("Script UI Calculator -----------------") try: calculator = Calculator(a, op, b) if calculator.valid: logger.write_log("Operation: " + a + op + b) action(logger, controller, calculator, device_params) else: logger.error_log("Validation of Inputs Failed") except SyntaxError as ex: logger.end_log(ex.message) except ValueError as ex: logger.end_log(ex.message) except TypeError as ex: logger.end_log(ex.message) except ZeroDivisionError as ex: logger.end_log(ex.message) except Exception as ex: logger.error_log(ex.message)
def run(number=None, stf_info=None, name="", filename="log_dialer.txt"): stf = False device_params = {} # path to save logs path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(path, "..", "..", "qa", "reports", "") logger = Logger(filename, path, name) controller = PhoneControl() if stf_info is not None: serials = [stf_info['remote_serial']] device_params = utils.get_device_data(stf_info['device']) stf = True else: serials = controller.read_serials() for i in range(len(serials)): logger.write_log(" Device {} = {}".format(i + 1, serials)) controller.init_device(serials[i]) if not stf: device_params = utils.get_device_data(serials[i]) logger.write_log("Script Dial Number---------") if number is None: n = raw_input("Enter the number to dial : ") else: n = number try: dialable, parsedNumber, msg = utils.validate_number(n) if dialable: logger.write_log(msg + " " + str(parsedNumber)) action(logger, controller, parsedNumber, device_params) else: logger.end_log("Invalid phone number") except Exception as ex: logger.error_log(ex.message)
def run(filename, path, number=None): logger = Logger(filename, path) controller = PhoneControl(3) serial = controller.read_serial() logger.write_log("1st Device on List = {}".format(serial)) controller.init_device() logger.write_log("Script Dial Number---------") if number is None: n = raw_input("Enter the number to dial : ") else: n = number try: dialable, parsedNumber, msg = utils.validate_number(n) if dialable: logger.write_log(msg + " " + str(parsedNumber)) action(logger, controller, parsedNumber) else: logger.error_log("Invalid phone number") except Exception as ex: logger.error_log(ex.message)
def main(opt): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test # torch.backends.cudnn.enabled = False Dataset = get_dataset(opt.dataset, opt.task) opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) logger = Logger(opt) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu') print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv, opt.houghnet, opt.region_num, opt.vote_field_size) optimizer = torch.optim.Adam(model.parameters(), opt.lr) start_epoch = 0 if opt.load_model != '': model, optimizer, start_epoch = load_model(model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step) Trainer = train_factory[opt.task] trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) print('Setting up data...') val_loader = torch.utils.data.DataLoader(Dataset(opt, 'val'), batch_size=1, shuffle=False, num_workers=1, pin_memory=True) if opt.test: _, preds = trainer.val(0, val_loader) val_loader.dataset.run_eval(preds, opt.save_dir) return train_loader = torch.utils.data.DataLoader( Dataset(opt, 'train'), #train batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True) print('Starting training...') best = 1e10 for epoch in range(start_epoch + 1, opt.num_epochs + 1): mark = epoch if opt.save_all else 'last' log_dict_train, _ = trainer.train(epoch, train_loader) logger.write('epoch: {} |'.format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)), epoch, model, optimizer) with torch.no_grad(): log_dict_val, preds = trainer.val(epoch, val_loader) for k, v in log_dict_val.items(): logger.scalar_summary('val_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if log_dict_val[opt.metric] < best: best = log_dict_val[opt.metric] save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model) else: save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer) logger.write('\n') if epoch in opt.lr_step: save_model( os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr logger.close()
def main(opt): torch.manual_seed( opt.seed ) # opt.seed: default=317 ;加上torch.manual_seed这个函数调用的话,打印出来的随机数每次都一样。 torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test Dataset = get_dataset( opt.dataset, opt.task ) # opt.dataset = coco, opt.task = ctdet (| ddd | multi_pose | exdet) opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) logger = Logger(opt) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu') print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv) optimizer = torch.optim.Adam(model.parameters(), opt.lr) start_epoch = 0 if opt.load_model != '': model, optimizer, start_epoch = load_model(model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step) Trainer = train_factory[opt.task] trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) print('Setting up data...') # val_loader = torch.utils.data.DataLoader(Dataset(opt, 'val'), batch_size=1, shuffle=False, num_workers=1,pin_memory=True) # modified by zy val_loader = torch.utils.data.DataLoader(Dataset(opt, 'test'), batch_size=1, shuffle=False, num_workers=1, pin_memory=True) if opt.test: _, preds = trainer.val(0, val_loader) val_loader.dataset.run_eval(preds, opt.save_dir) return train_loader = torch.utils.data.DataLoader(Dataset(opt, 'train'), batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True) output_choice_log = '/home/zy/zy/2new_network/CenterNet-master/output_choice.log' if os.path.exists(output_choice_log): os.remove(output_choice_log) print('Starting training...') best = 1e10 for epoch in range(start_epoch + 1, opt.num_epochs + 1): mark = epoch if opt.save_all else 'last' try: log_dict_train, _ = trainer.train( epoch, train_loader ) # !!!!!!!! train = self.run_epoch('train', epoch, data_loader) except Exception as e: # 如果发生异常,那就返回预设的loss值 print('Error_train!!!', e) print(traceback.format_exc()) continue logger.write('epoch: {} |'.format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)), epoch, model, optimizer) with torch.no_grad(): try: log_dict_val, preds = trainer.val(epoch, val_loader) except Exception as e: # 如果发生异常,那就返回预设的loss值 print('Error_train!!!', e) print(traceback.format_exc()) continue for k, v in log_dict_val.items(): logger.scalar_summary('val_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if log_dict_val[opt.metric] < best: best = log_dict_val[opt.metric] save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model) else: save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer) logger.write('\n') if epoch in opt.lr_step: save_model( os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr logger.close()
def main(opt): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test print('Setting up data...') Dataset = get_dataset(opt.dataset, opt.task) f = open(opt.data_cfg) data_config = json.load(f) trainset_paths = data_config['train'] dataset_root = data_config['root'] f.close() transforms = T.Compose([T.ToTensor()]) dataset = Dataset(opt, dataset_root, trainset_paths, (1088, 608), augment=True, transforms=transforms) opt = opts().update_dataset_info_and_set_heads(opt, dataset) print(opt) logger = Logger(opt) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu') print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv) optimizer = torch.optim.Adam(model.parameters(), opt.lr) start_epoch = 0 # Get dataloader train_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True) print('Starting training...') Trainer = train_factory[opt.task] trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) if opt.load_model != '': model, optimizer, start_epoch = load_model(model, opt.load_model, trainer.optimizer, opt.resume, opt.lr, opt.lr_step) best = 1e10 for epoch in range(start_epoch + 1, opt.num_epochs + 1): mark = epoch if opt.save_all else 'last' log_dict_train, _ = trainer.train(epoch, train_loader) logger.write('epoch: {} |'.format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)), epoch, model, optimizer) else: save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer) logger.write('\n') if epoch in opt.lr_step: save_model( os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = opt.lr * (0.1**(opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr if epoch % 5 == 0 or epoch >= 25: save_model( os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) logger.close()
def main(opt): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test Dataset = get_dataset(opt.dataset) opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) if not opt.not_set_cuda_env: os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus_str opt.device = torch.device("cuda" if opt.gpus[0] >= 0 else "cpu") logger = Logger(opt) print("Creating model...") model = create_model(opt.arch, opt.heads, opt.head_conv, opt=opt) optimizer = get_optimizer(opt, model) start_epoch = 0 if opt.load_model != "": model, optimizer, start_epoch = load_model(model, opt.load_model, opt, optimizer) trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) if opt.val_intervals < opt.num_epochs or opt.test: print("Setting up validation data...") val_loader = torch.utils.data.DataLoader( Dataset(opt, "val"), batch_size=1, shuffle=False, num_workers=1, pin_memory=True ) if opt.test: _, preds = trainer.val(0, val_loader) val_loader.dataset.run_eval(preds, opt.save_dir) return print("Setting up train data...") train_loader = torch.utils.data.DataLoader( Dataset(opt, "train"), batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True, ) print("Starting training...") for epoch in range(start_epoch + 1, opt.num_epochs + 1): mark = epoch if opt.save_all else "last" log_dict_train, _ = trainer.train(epoch, train_loader) logger.write("epoch: {} |".format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary("train_{}".format(k), v, epoch) logger.write("{} {:8f} | ".format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, "model_{}.pth".format(mark)), epoch, model, optimizer) with torch.no_grad(): log_dict_val, preds = trainer.val(epoch, val_loader) if opt.eval_val: val_loader.dataset.run_eval(preds, opt.save_dir) for k, v in log_dict_val.items(): logger.scalar_summary("val_{}".format(k), v, epoch) logger.write("{} {:8f} | ".format(k, v)) else: save_model(os.path.join(opt.save_dir, "model_last.pth"), epoch, model, optimizer) logger.write("\n") if epoch in opt.save_point: save_model(os.path.join(opt.save_dir, "model_{}.pth".format(epoch)), epoch, model, optimizer) if epoch in opt.lr_step: lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1)) print("Drop LR to", lr) for param_group in optimizer.param_groups: param_group["lr"] = lr logger.close()