示例#1
0
    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        anns = self.coco.loadAnns(ids=ann_ids)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        s = max(img.shape[0], img.shape[1]) * 1.0
        rot = 0

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(low=w_border,
                                         high=img.shape[1] - w_border)
                c[1] = np.random.randint(low=h_border,
                                         high=img.shape[0] - h_border)
            else:
                sf = self.opt.scale
                cf = self.opt.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
            if np.random.random() < self.opt.aug_rot:
                rf = self.opt.rotate
                rot = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(
            c, s, rot, [self.opt.input_res, self.opt.input_res])
        inp = cv2.warpAffine(img,
                             trans_input,
                             (self.opt.input_res, self.opt.input_res),
                             flags=cv2.INTER_LINEAR)
        inp = (inp.astype(np.float32) / 255.)
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        inp = (inp - self.mean) / self.std
        inp = inp.transpose(2, 0, 1)

        output_res = self.opt.output_res
        num_joints = self.num_joints
        trans_output_rot = get_affine_transform(c, s, rot,
                                                [output_res, output_res])
        trans_output = get_affine_transform(c, s, 0, [output_res, output_res])

        hm = np.zeros((self.num_classes, output_res, output_res),
                      dtype=np.float32)
        hm_hp = np.zeros((num_joints, output_res, output_res),
                         dtype=np.float32)
        dense_kps = np.zeros((num_joints, 2, output_res, output_res),
                             dtype=np.float32)
        dense_kps_mask = np.zeros((num_joints, output_res, output_res),
                                  dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        kps = np.zeros((self.max_objs, num_joints * 2), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        kps_mask = np.zeros((self.max_objs, self.num_joints * 2),
                            dtype=np.uint8)
        hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)
        hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
        hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                        draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            cls_id = int(ann['category_id']) - 1
            pts = np.array(ann['keypoints'], np.float32).reshape(num_joints, 3)
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
                pts[:, 0] = width - pts[:, 0] - 1
                for e in self.flip_idx:
                    pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox = np.clip(bbox, 0, output_res - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if (h > 0 and w > 0) or (rot != 0):
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = self.opt.hm_gauss if self.opt.mse_loss else max(
                    0, int(radius))
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_res + ct_int[0]
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                num_kpts = pts[:, 2].sum()
                if num_kpts == 0:
                    hm[cls_id, ct_int[1], ct_int[0]] = 0.9999
                    reg_mask[k] = 0

                hp_radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                hp_radius = self.opt.hm_gauss \
                            if self.opt.mse_loss else max(0, int(hp_radius))
                for j in range(num_joints):
                    if pts[j, 2] > 0:
                        pts[j, :2] = affine_transform(pts[j, :2],
                                                      trans_output_rot)
                        if pts[j, 0] >= 0 and pts[j, 0] < output_res and \
                           pts[j, 1] >= 0 and pts[j, 1] < output_res:
                            kps[k, j * 2:j * 2 + 2] = pts[j, :2] - ct_int
                            kps_mask[k, j * 2:j * 2 + 2] = 1
                            pt_int = pts[j, :2].astype(np.int32)
                            hp_offset[k * num_joints + j] = pts[j, :2] - pt_int
                            hp_ind[k * num_joints +
                                   j] = pt_int[1] * output_res + pt_int[0]
                            hp_mask[k * num_joints + j] = 1
                            if self.opt.dense_hp:
                                # must be before draw center hm gaussian
                                draw_dense_reg(dense_kps[j],
                                               hm[cls_id],
                                               ct_int,
                                               pts[j, :2] - ct_int,
                                               radius,
                                               is_offset=True)
                                draw_gaussian(dense_kps_mask[j], ct_int,
                                              radius)
                            draw_gaussian(hm_hp[j], pt_int, hp_radius)
                draw_gaussian(hm[cls_id], ct_int, radius)
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] +
                    h / 2, 1
                ] + pts[:, :2].reshape(num_joints * 2).tolist() + [cls_id])
        if rot != 0:
            hm = hm * 0 + 0.9999
            reg_mask *= 0
            kps_mask *= 0
        ret = {
            'input': inp,
            'hm': hm,
            'reg_mask': reg_mask,
            'ind': ind,
            'wh': wh,
            'hps': kps,
            'hps_mask': kps_mask
        }
        if self.opt.dense_hp:
            dense_kps = dense_kps.reshape(num_joints * 2, output_res,
                                          output_res)
            dense_kps_mask = dense_kps_mask.reshape(num_joints, 1, output_res,
                                                    output_res)
            dense_kps_mask = np.concatenate([dense_kps_mask, dense_kps_mask],
                                            axis=1)
            dense_kps_mask = dense_kps_mask.reshape(num_joints * 2, output_res,
                                                    output_res)
            ret.update({
                'dense_hps': dense_kps,
                'dense_hps_mask': dense_kps_mask
            })
            del ret['hps'], ret['hps_mask']
        if self.opt.reg_offset:
            ret.update({'reg': reg})
        if self.opt.hm_hp:
            ret.update({'hm_hp': hm_hp})
        if self.opt.reg_hp_offset:
            ret.update({
                'hp_offset': hp_offset,
                'hp_ind': hp_ind,
                'hp_mask': hp_mask
            })
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                     np.zeros((1, 40), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta
        return ret
示例#2
0
文件: ctdet.py 项目: zyg11/houghnet
    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        anns = self.coco.loadAnns(ids=ann_ids)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        if self.opt.keep_res:
            input_h = (height | self.opt.pad) + 1
            input_w = (width | self.opt.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
        else:
            s = max(img.shape[0], img.shape[1]) * 1.0
            input_h, input_w = self.opt.input_h, self.opt.input_w

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(low=w_border,
                                         high=img.shape[1] - w_border)
                c[1] = np.random.randint(low=h_border,
                                         high=img.shape[0] - h_border)
            else:
                sf = self.opt.scale
                cf = self.opt.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        inp = cv2.warpAffine(img,
                             trans_input, (input_w, input_h),
                             flags=cv2.INTER_LINEAR)
        inp = (inp.astype(np.float32) / 255.)
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        inp = (inp - self.mean) / self.std
        inp = inp.transpose(2, 0, 1)

        output_h = input_h // self.opt.down_ratio
        output_w = input_w // self.opt.down_ratio
        num_classes = self.num_classes
        trans_output = get_affine_transform(c, s, 0, [output_w, output_h])

        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        cat_spec_wh = np.zeros((self.max_objs, num_classes * 2),
                               dtype=np.float32)
        cat_spec_mask = np.zeros((self.max_objs, num_classes * 2),
                                 dtype=np.uint8)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                        draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            cls_id = int(self.cat_ids[ann['category_id']])
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                radius = self.opt.hm_gauss if self.opt.mse_loss else radius
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                draw_gaussian(hm[cls_id], ct_int, radius)
                wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_w + ct_int[0]
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                cat_spec_wh[k, cls_id * 2:cls_id * 2 + 2] = wh[k]
                cat_spec_mask[k, cls_id * 2:cls_id * 2 + 2] = 1
                if self.opt.dense_wh:
                    draw_dense_reg(dense_wh, hm.max(axis=0), ct_int, wh[k],
                                   radius)
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2,
                    1, cls_id
                ])

        ret = {
            'input': inp,
            'hm': hm,
            'reg_mask': reg_mask,
            'ind': ind,
            'wh': wh
        }
        if self.opt.dense_wh:
            hm_a = hm.max(axis=0, keepdims=True)
            dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0)
            ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask})
            del ret['wh']
        elif self.opt.cat_spec_wh:
            ret.update({
                'cat_spec_wh': cat_spec_wh,
                'cat_spec_mask': cat_spec_mask
            })
            del ret['wh']
        if self.opt.reg_offset:
            ret.update({'reg': reg})
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                     np.zeros((1, 6), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta
        return ret
示例#3
0
    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        # print("55555:", img_path)
        ann_ids = self.coco.getAnnIds(
            imgIds=[img_id])  # getAnnIds:通过输入图片的id来得到图片的anno_id
        anns = self.coco.loadAnns(
            ids=ann_ids)  # loadAnns:通过anno_id,得到图片对应的详细anno信息
        # print(111111, anns)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        if self.opt.keep_res:
            input_h = (height | self.opt.pad) + 1
            input_w = (width | self.opt.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
        else:
            s = max(img.shape[0], img.shape[1]) * 1.0
            input_h, input_w = self.opt.input_h, self.opt.input_w

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:  # (not self.opt.not_rand_crop) = True
                # s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))  # 从0.6-1.4中随机选取一个数字(步长为0.1)
                s = s * np.random.choice(np.arange(
                    0.7, 1.3, 0.1))  # 从0.6-1.4中随机选取一个数字(步长为0.1)
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(low=w_border,
                                         high=img.shape[1] - w_border)
                c[1] = np.random.randint(low=h_border,
                                         high=img.shape[0] - h_border)
                # print(111, c)
            else:
                sf = self.opt.scale  # 0.4 # when not using random crop apply scale augmentation.
                cf = self.opt.shift  # 0.1 # when not using random crop apply shift augmentation.
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(c, s, 0,
                                           [input_w, input_h])  # 由三对点计算仿射变换
        inp = cv2.warpAffine(img,
                             trans_input, (input_w, input_h),
                             flags=cv2.INTER_LINEAR)  # 对图像做仿射变换
        inp = (inp.astype(np.float32) / 255.)  # 归一化
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        # inp = (inp - self.mean) / self.std                                         # !!!!!!! modified by zy
        inp = inp.transpose(2, 0, 1)

        # add by zy
        # inp = np.transpose(inp, [1, 2, 0])
        # cv2.imshow('input', inp)
        # cv2.waitKey(0)

        output_h = input_h // self.opt.down_ratio  # 网络输出的预测结果特征图是128*128,这里要将GTbox也缩小为128*128来计算loss
        output_w = input_w // self.opt.down_ratio  #
        num_classes = self.num_classes
        trans_output = get_affine_transform(c, s, 0, [output_w, output_h])

        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        ori_wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        cxcy = np.zeros((self.max_objs, 2), dtype=np.float32)
        ori_cxcy = np.zeros((self.max_objs, 2), dtype=np.float32)
        cls_idx = np.zeros((self.max_objs), dtype=np.int64)
        dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        cat_spec_wh = np.zeros((self.max_objs, num_classes * 2),
                               dtype=np.float32)
        cat_spec_mask = np.zeros((self.max_objs, num_classes * 2),
                                 dtype=np.uint8)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                        draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            ori_h, ori_w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            ori_cx, ori_cy = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
            cls_id = int(self.cat_ids[ann['category_id']])
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
            # print(111111, bbox)
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            # print(222222, bbox)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            cx, cy = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
            # print(333333, h,w)
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                radius = self.opt.hm_gauss if self.opt.mse_loss else radius
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                draw_gaussian(hm[cls_id], ct_int, radius)
                wh[k] = 1. * w, 1. * h
                ori_wh[k] = 1. * ori_w, 1. * ori_h
                cxcy[k] = 1. * cx, 1. * cy
                ori_cxcy[k] = 1. * ori_cx, 1. * ori_cy
                cls_idx[k] = cls_id
                ind[k] = ct_int[1] * output_w + ct_int[
                    0]  # ind这个参数是用来??? ind = int_cy*output_w + int_cx
                reg[k] = ct - ct_int  # reg是用来回归精确小数与整数之间的误差的???
                reg_mask[k] = 1
                cat_spec_wh[k, cls_id * 2:cls_id * 2 + 2] = wh[k]
                cat_spec_mask[k, cls_id * 2:cls_id * 2 + 2] = 1
                if self.opt.dense_wh:
                    draw_dense_reg(dense_wh, hm.max(axis=0), ct_int, wh[k],
                                   radius)
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2,
                    1, cls_id
                ])  # [tlx,tly,brx,bry,1,cls_id]
        ret = {
            'input': inp,
            'hm': hm,
            'reg_mask': reg_mask,
            'ind': ind,
            'wh': wh,
            'ori_wh': ori_wh,
            'cxcy': cxcy,
            'ori_cxcy': ori_cxcy,
            'cls_idx': cls_idx
        }
        if self.opt.dense_wh:  # FALSE , 'apply weighted regression near center or just apply regression on center point.'
            hm_a = hm.max(axis=0, keepdims=True)
            dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0)
            ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask})
            del ret['wh']
        elif self.opt.cat_spec_wh:  # flase , 'category specific bounding box size.'
            ret.update({
                'cat_spec_wh': cat_spec_wh,
                'cat_spec_mask': cat_spec_mask
            })
            del ret['wh']
        if self.opt.reg_offset:  # true
            ret.update({'reg': reg})
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                     np.zeros((1, 6), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta

        # print(ret['hm'].shape, )
        # cx, cy = int(ret['cxcy'][0][0]), int(ret['cxcy'][0][1])
        # w, h = int(ret['wh'][0][0]), int(ret['wh'][0][1])
        # print(cx,cy,w,h, ret['hm'][0][cy][cx])
        # print(1111111111111, ret['input'].shape, ret['hm'].shape, ret['wh'].shape, ret['reg'].shape, ret['reg_mask'].shape, ret['ind'].shape)
        # input_img = np.transpose([ret['hm'][cls_id]], [1,2,0])
        # crop_img = input_img[(cy - h // 2):(cy + h // 2), (cx - w // 2):(cx + w // 2)]
        # cv2.rectangle(input_img, (cx - w // 2, cy - h // 2),
        #               (cx + w // 2, cy + h // 2), (255, 250, 250),  2)
        # cv2.imshow('input', crop_img)
        # cv2.waitKey(0)
        # print(2222222222222, type(ret['input']), type(ret['hm']), type(ret['hm']), type(ret['reg']), type(ret['reg_mask']), type(ret['ind']))
        # print(ret.keys())   # dict_keys(['ind', 'reg_mask', 'hm', 'input', 'reg', 'wh'])
        return ret