示例#1
0
    def _validater(self, dataset_iter, epoch):
        TP, numPR, numGT = 0, 0, 0
        dataset_iter.reset()
        N = dataset_iter.dataset.__len__()
        sum_loss = 0
        #perm = np.random.permutation(N)
        for num in range(N):
            if self.mean_image is None:
                x_batch, y_batch = dataset_iter.next()[0]
            else:
                x_batch, y_batch = dataset_iter.next(
                )[0][0] - self.mean_image, dataset_iter.next()[0][1]

            if self.ndim == 2:
                im_size = x_batch.shape[2:]
                stride = [self.patchsize[0] / 2, self.patchsize[1] / 2]
                sh = [stride[0] / 2, stride[1] / 2]
            elif self.ndim == 3:
                im_size = x_batch.shape[2:]
                stride = [
                    self.patchsize[0] / 2, self.patchsize[1] / 2,
                    self.patchsize[2] / 2
                ]
                sh = [stride[0] / 2, stride[1] / 2, stride[2] / 2]
            ''' calculation for pad size'''
            if np.min(self.patchsize) > np.max(im_size):
                if self.ndim == 2:
                    pad_size = [self.patchsize[0], self.patchsize[1]]
                elif self.ndim == 3:
                    pad_size = [
                        self.patchsize[0], self.patchsize[1], self.patchsize[2]
                    ]
            else:
                pad_size = []
                for axis in range(len(im_size)):
                    if (im_size[axis] + 2 * sh[axis] -
                            self.patchsize[axis]) % stride[axis] == 0:
                        stride_num = (im_size[axis] + 2 * sh[axis] -
                                      self.patchsize[axis]) / stride[axis]
                    else:
                        stride_num = (im_size[axis] + 2 * sh[axis] -
                                      self.patchsize[axis]) / stride[axis] + 1
                    pad_size.append(stride[axis] * stride_num +
                                    self.patchsize[axis])

            gt = copy.deepcopy(y_batch)

            if self.ndim == 2:
                x_batch = mirror_extension_image(
                    image=x_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, :, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1]]
                y_batch = mirror_extension_image(
                    image=y_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1]]
                pre_img = np.zeros(pad_size)
                for y in range(0, pad_size[0] - stride[0], stride[0]):
                    for x in range(0, pad_size[1] - stride[1], stride[1]):
                        x_patch = x_batch[:, :, y:y + self.patchsize[0],
                                          x:x + self.patchsize[1]]
                        y_patch = y_batch[:, y:y + self.patchsize[0],
                                          x:x + self.patchsize[1]]
                        if self.gpu >= 0:
                            x_patch = cuda.to_gpu(x_patch)
                            y_patch = cuda.to_gpu(y_patch)
                        s_loss, s_output = self.model(x=x_patch,
                                                      t=y_patch,
                                                      seg=False)
                        sum_loss += float(
                            cuda.to_cpu(s_loss.data) * self.batchsize)
                        if self.gpu >= 0:
                            s_output = cuda.to_cpu(s_output)
                        pred = copy.deepcopy(
                            (0 < (s_output[0][1] - s_output[0][0])) * 255)
                        # Add segmentation image
                        pre_img[y:y + self.patchsize[0] - stride[0],
                                x:x + self.patchsize[1] -
                                stride[1]] += pred[sh[0]:-sh[0], sh[1]:-sh[1]]
                seg_img = (pre_img > 0) * 1
                seg_img = seg_img[0:im_size[0], 0:im_size[1]]
            elif self.ndim == 3:
                x_batch = mirror_extension_image(
                    image=x_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, :, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1], self.patchsize[2] -
                                          sh[2]:self.patchsize[2] - sh[2] +
                                          pad_size[2]]
                y_batch = mirror_extension_image(
                    image=y_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1], self.patchsize[2] -
                                          sh[2]:self.patchsize[2] - sh[2] +
                                          pad_size[2]]
                pre_img = np.zeros(pad_size)
                for z in range(0, pad_size[0] - stride[0], stride[0]):
                    for y in range(0, pad_size[1] - stride[1], stride[1]):
                        for x in range(0, pad_size[2] - stride[2], stride[2]):
                            x_patch = x_batch[:, :, z:z + self.patchsize[0],
                                              y:y + self.patchsize[1],
                                              x:x + self.patchsize[2]]
                            y_patch = y_batch[:, z:z + self.patchsize[0],
                                              y:y + self.patchsize[1],
                                              x:x + self.patchsize[2]]
                            if self.gpu >= 0:
                                x_patch = cuda.to_gpu(x_patch)
                                y_patch = cuda.to_gpu(y_patch)
                            s_loss, s_output = self.model(x=x_patch,
                                                          t=y_patch,
                                                          seg=False)
                            sum_loss += float(
                                cuda.to_cpu(s_loss.data) * self.batchsize)
                            if self.gpu >= 0:
                                s_output = cuda.to_cpu(s_output)
                            pred = copy.deepcopy(
                                (0 < (s_output[0][1] - s_output[0][0])) * 255)
                            # Add segmentation image
                            pre_img[z:z + self.patchsize[0] - stride[0],
                                    y:y + self.patchsize[1] - stride[1],
                                    x:x + self.patchsize[2] -
                                    stride[2]] += pred[sh[0]:-sh[0],
                                                       sh[1]:-sh[1],
                                                       sh[2]:-sh[2]]
                seg_img = (pre_img > 0) * 1
                seg_img = seg_img[0:im_size[0], 0:im_size[1], 0:im_size[2]]
            gt = gt[0]
            io.imsave('{}/segimg{}_validation.tif'.format(self.opbase, num),
                      np.array(seg_img * 255).astype(np.uint8))
            io.imsave('{}/gtimg{}_validation.tif'.format(self.opbase, num),
                      np.array(gt * 255).astype(np.uint8))

            if epoch > 0:
                #make Centroid Pred (0 : background, 1 : object)
                markers_pr = morphology.label(seg_img, neighbors=4)
                mask_size = np.unique(markers_pr,
                                      return_counts=True)[1] < (self.delv + 1)
                remove_voxel = mask_size[markers_pr]
                markers_pr[remove_voxel] = 0
                labels = np.unique(markers_pr)
                markers_pr = np.searchsorted(labels, markers_pr)
                numPR += np.max(markers_pr)
                center_pr = np.zeros((np.max(markers_pr), self.ndim))
                count_pr = np.zeros(np.max(markers_pr)).reshape(
                    np.max(markers_pr), 1)
                # make Centroid GT
                markers_gt = morphology.label(gt, neighbors=4)
                numGT += np.max(markers_gt)
                center_gt = np.zeros((np.max(markers_gt), self.ndim))
                count_gt = np.zeros(np.max(markers_gt)).reshape(
                    np.max(markers_gt), 1)
                if self.ndim == 2:
                    y, x = np.shape(gt)
                    for i in range(y):
                        for j in range(x):
                            if markers_pr[i][j] > 0:
                                center_pr[markers_pr[i][j] - 1][0] += j
                                center_pr[markers_pr[i][j] - 1][1] += i
                                count_pr[markers_pr[i][j] - 1] += 1
                            if markers_gt[i][j] > 0:
                                center_gt[markers_gt[i][j] - 1][0] += j
                                center_gt[markers_gt[i][j] - 1][1] += i
                                count_gt[markers_gt[i][j] - 1] += 1
                elif self.ndim == 3:
                    z, y, x = np.shape(gt)
                    for i in range(z):
                        for j in range(y):
                            for k in range(x):
                                if markers_pr[i][j][k] > 0:
                                    center_pr[markers_pr[i][j][k] - 1][0] += k
                                    center_pr[markers_pr[i][j][k] - 1][1] += j
                                    center_pr[markers_pr[i][j][k] - 1][2] += i
                                    count_pr[markers_pr[i][j][k] - 1] += 1
                                if markers_gt[i][j][k] > 0:
                                    center_gt[markers_gt[i][j][k] - 1][0] += k
                                    center_gt[markers_gt[i][j][k] - 1][1] += j
                                    center_gt[markers_gt[i][j][k] - 1][2] += i
                                    count_gt[markers_gt[i][j][k] - 1] += 1
                center_pr /= count_pr
                center_gt /= count_gt
                pare = []
                for gn in range(len(center_gt)):
                    tmp = 0
                    chaild = []
                    for pn in range(len(center_pr)):
                        if np.sum((center_gt[gn] - center_pr[pn])**
                                  2) < self.r_thr**2:
                            chaild.append(pn)
                            tmp += 1
                    if tmp > 0:
                        pare.append(chaild)
                used = np.zeros(len(center_pr))
                TP += self._search_list(pare, used, 0)

        evals = self._evaluator(TP, numPR, numGT)
        return evals, sum_loss
示例#2
0
    def NuclearDetection(self, image_path):
        segbase = 'DetectionImages'
        if not (pt.exists(self.opbase + self.psep + segbase)):
            os.mkdir(self.opbase + self.psep + segbase)
        labbase = 'LabelingDetectionImages'
        if not (pt.exists(self.opbase + self.psep + labbase)):
            os.mkdir(self.opbase + self.psep + labbase)

        image = io.imread(image_path)
        im_size = image.shape
        if self.ndim == 2:
            ip_size = (int(image.shape[0] * self.resolution[1]),
                       int(image.shape[1] * self.resolution[0]))
            sh = [int(self.stride[0] / 2), int(self.stride[1] / 2)]
        elif self.ndim == 3:
            ip_size = (int(image.shape[0] * self.resolution[2]),
                       int(image.shape[1] * self.resolution[1]),
                       int(image.shape[2] * self.resolution[0]))
            sh = [
                int(self.stride[0] / 2),
                int(self.stride[1] / 2),
                int(self.stride[2] / 2)
            ]
        image = tr.resize(image, ip_size, order=1, preserve_range=True)
        im_size_ip = image.shape

        # Scaling
        if self.scaling:
            image = image.astype(np.float32)
            #image = image / image.max()
            image = (image - image.min()) / (image.max() - image.min())
            #image = (image - image.mean()) / image.std()
        ''' calculation for pad size'''
        #if np.min(self.patchsize) > np.max(im_size):
        if np.min(
                self.patchsize) > np.max(np.array(im_size) + np.array(sh) * 2):
            if self.ndim == 2:
                pad_size = [self.patchsize[0], self.patchsize[1]]
            elif self.ndim == 3:
                pad_size = [
                    self.patchsize[0], self.patchsize[1], self.patchsize[2]
                ]
        else:
            pad_size = []
            for axis in range(len(im_size_ip)):
                if (im_size_ip[axis] + 2 * sh[axis] -
                        self.patchsize[axis]) % self.stride[axis] == 0:
                    stride_num = int(
                        (im_size_ip[axis] + 2 * sh[axis] -
                         self.patchsize[axis]) / self.stride[axis])
                else:
                    stride_num = int(
                        (im_size_ip[axis] + 2 * sh[axis] -
                         self.patchsize[axis]) / self.stride[axis]) + 1
                pad_size.append(
                    int(self.stride[axis] * stride_num + self.patchsize[axis]))

        pre_img = np.zeros(pad_size)

        if self.ndim == 2:
            image = mirror_extension_image(
                image=image,
                ndim=self.ndim,
                length=int(np.max(self.patchsize)))[self.patchsize[0] -
                                                    sh[0]:self.patchsize[0] -
                                                    sh[0] + pad_size[0],
                                                    self.patchsize[1] -
                                                    sh[1]:self.patchsize[1] -
                                                    sh[1] + pad_size[1]]
            for y in range(0, pad_size[0] - self.stride[0], self.stride[0]):
                for x in range(0, pad_size[1] - self.stride[1],
                               self.stride[1]):
                    x_patch = image[y:y + self.patchsize[0],
                                    x:x + self.patchsize[1]]
                    x_patch = np.expand_dims(np.expand_dims(x_patch.astype(
                        np.float32),
                                                            axis=0),
                                             axis=0)
                    if self.gpu >= 0:
                        x_patch = cuda.to_gpu(x_patch)
                    s_output = self.model(x=x_patch, t=None, seg=True)
                    if self.gpu >= 0:
                        s_output = cuda.to_cpu(s_output)
                    pred = copy.deepcopy(
                        (0 < (s_output[0][1] - s_output[0][0])) * 255)
                    # Add segmentation image
                    pre_img[y:y + self.stride[0],
                            x:x + self.stride[1]] += pred[sh[0]:-sh[0],
                                                          sh[1]:-sh[1]]
            seg_img = (pre_img > 0) * 255
            seg_img = seg_img[0:im_size_ip[0], 0:im_size_ip[1]]

        elif self.ndim == 3:
            image = mirror_extension_image(
                image=image,
                ndim=self.ndim,
                length=int(np.max(
                    self.patchsize)))[self.patchsize[0] -
                                      sh[0]:self.patchsize[0] - sh[0] +
                                      pad_size[0], self.patchsize[1] -
                                      sh[1]:self.patchsize[1] - sh[1] +
                                      pad_size[1], self.patchsize[2] -
                                      sh[2]:self.patchsize[2] - sh[2] +
                                      pad_size[2]]
            for z in range(0, pad_size[0] - self.stride[0], self.stride[0]):
                for y in range(0, pad_size[1] - self.stride[1],
                               self.stride[1]):
                    for x in range(0, pad_size[2] - self.stride[2],
                                   self.stride[2]):
                        x_patch = image[z:z + self.patchsize[0],
                                        y:y + self.patchsize[1],
                                        x:x + self.patchsize[2]]
                        x_patch = np.expand_dims(np.expand_dims(x_patch.astype(
                            np.float32),
                                                                axis=0),
                                                 axis=0)
                        if self.gpu >= 0:
                            x_patch = cuda.to_gpu(x_patch)
                        s_output = self.model(x=x_patch, t=None, seg=True)
                        if self.gpu >= 0:
                            s_output = cuda.to_cpu(s_output)
                        pred = copy.deepcopy(
                            (0 < (s_output[0][1] - s_output[0][0])) * 255)
                        # Add segmentation image
                        pre_img[z:z + self.stride[0], y:y + self.stride[1],
                                x:x + self.stride[2]] += pred[sh[0]:-sh[0],
                                                              sh[1]:-sh[1],
                                                              sh[2]:-sh[2]]
            seg_img = (pre_img > 0) * 255
            seg_img = seg_img[0:im_size_ip[0], 0:im_size_ip[1],
                              0:im_size_ip[2]]

        seg_img = (tr.resize(seg_img, im_size, order=1, preserve_range=True) >
                   0) * 255
        filename = os.path.join(
            self.opbase, segbase,
            os.path.basename(image_path)
            [:os.path.basename(image_path).rfind('.')] + '.tif')
        # filename = self.opbase + self.psep + segbase + self.psep + 'detimg_t{0:03d}.tif'.format(int(image_path[image_path.rfind('/')+1:image_path.rfind('.')]))
        io.imsave(filename, seg_img.astype(np.uint8))
        lab_img = mor.label(seg_img.astype(np.uint16), neighbors=4)
        mask_size = np.unique(lab_img, return_counts=True)[1] < (self.delv + 1)
        remove_voxel = mask_size[lab_img]
        lab_img[remove_voxel] = 0
        labels = np.unique(lab_img)
        lab_img = np.searchsorted(labels, lab_img)
        filename = os.path.join(
            self.opbase, labbase,
            os.path.basename(image_path)
            [:os.path.basename(image_path).rfind('.')] + '.tif')
        # filename = self.opbase + self.psep + labbase + self.psep + 'labimg_t{0:03d}.tif'.format(int(image_path[image_path.rfind('/')+1:image_path.rfind('.')]))
        io.imsave(filename, lab_img.astype(np.uint16))

        return lab_img.astype(np.uint16)
示例#3
0
    def _validater(self, dataset_iter, epoch):
        TP, TN, FP, FN = 0, 0, 0, 0
        dataset_iter.reset()
        N = dataset_iter.dataset.__len__()
        sum_loss = 0
        #perm = np.random.permutation(N)
        for num in range(N):
            if self.mean_image is None:
                x_batch, y_batch = dataset_iter.next()[0]
            else:
                x_batch, y_batch = dataset_iter.next(
                )[0][0] - self.mean_image, dataset_iter.next()[0][1]

            if self.ndim == 2:
                im_size = x_batch.shape[2:]
                stride = [
                    int(self.patchsize[0] / 2),
                    int(self.patchsize[1] / 2)
                ]
                sh = [int(stride[0] / 2), int(stride[1] / 2)]
            elif self.ndim == 3:
                im_size = x_batch.shape[2:]
                stride = [
                    int(self.patchsize[0] / 2),
                    int(self.patchsize[1] / 2),
                    int(self.patchsize[2] / 2)
                ]
                sh = [
                    int(stride[0] / 2),
                    int(stride[1] / 2),
                    int(stride[2] / 2)
                ]
            ''' calculation for pad size'''
            if np.min(self.patchsize) > np.max(im_size):
                if self.ndim == 2:
                    pad_size = [self.patchsize[0], self.patchsize[1]]
                elif self.ndim == 3:
                    pad_size = [
                        self.patchsize[0], self.patchsize[1], self.patchsize[2]
                    ]
            else:
                pad_size = []
                for axis in range(len(im_size)):
                    if (im_size[axis] + 2 * sh[axis] -
                            self.patchsize[axis]) % stride[axis] == 0:
                        stride_num = (im_size[axis] + 2 * sh[axis] -
                                      self.patchsize[axis]) / stride[axis]
                    else:
                        stride_num = (im_size[axis] + 2 * sh[axis] -
                                      self.patchsize[axis]) / stride[axis] + 1
                    pad_size.append(
                        int(stride[axis] * stride_num + self.patchsize[axis]))

            gt = copy.deepcopy(y_batch)
            pre_img = np.zeros(pad_size)

            if self.ndim == 2:
                x_batch = mirror_extension_image(
                    image=x_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, :, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1]]
                y_batch = mirror_extension_image(
                    image=y_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1]]
                for y in range(0, pad_size[0] - stride[0], stride[0]):
                    for x in range(0, pad_size[1] - stride[1], stride[1]):
                        x_patch = x_batch[:, :, y:y + self.patchsize[0],
                                          x:x + self.patchsize[1]]
                        y_patch = y_batch[:, y:y + self.patchsize[0],
                                          x:x + self.patchsize[1]]
                        if self.gpu >= 0:
                            x_patch = cuda.to_gpu(x_patch)
                            y_patch = cuda.to_gpu(y_patch)
                        s_loss, s_output = self.model(x=x_patch,
                                                      t=y_patch,
                                                      seg=False)
                        sum_loss += float(
                            cuda.to_cpu(s_loss.data) * self.batchsize)
                        if self.gpu >= 0:
                            s_output = cuda.to_cpu(s_output)
                        pred = copy.deepcopy(
                            (0 < (s_output[0][1] - s_output[0][0])) * 255)
                        # Add segmentation image
                        pre_img[y:y + stride[0],
                                x:x + stride[1]] += pred[sh[0]:-sh[0],
                                                         sh[1]:-sh[1]]
                seg_img = (pre_img > 0) * 1
                seg_img = seg_img[:im_size[0], :im_size[1]]
            elif self.ndim == 3:
                x_batch = mirror_extension_image(
                    image=x_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, :, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1], self.patchsize[2] -
                                          sh[2]:self.patchsize[2] - sh[2] +
                                          pad_size[2]]
                y_batch = mirror_extension_image(
                    image=y_batch,
                    ndim=self.ndim,
                    length=int(np.max(
                        self.patchsize)))[:, self.patchsize[0] -
                                          sh[0]:self.patchsize[0] - sh[0] +
                                          pad_size[0], self.patchsize[1] -
                                          sh[1]:self.patchsize[1] - sh[1] +
                                          pad_size[1], self.patchsize[2] -
                                          sh[2]:self.patchsize[2] - sh[2] +
                                          pad_size[2]]
                for z in range(0, pad_size[0] - self.patchsize[0], stride[0]):
                    for y in range(0, pad_size[1] - self.patchsize[1],
                                   stride[1]):
                        for x in range(0, pad_size[2] - self.patchsize[2],
                                       stride[2]):
                            x_patch = x_batch[:, :, z:z + self.patchsize[0],
                                              y:y + self.patchsize[1],
                                              x:x + self.patchsize[2]]
                            y_patch = y_batch[:, z:z + self.patchsize[0],
                                              y:y + self.patchsize[1],
                                              x:x + self.patchsize[2]]
                            if self.gpu >= 0:
                                x_patch = cuda.to_gpu(x_patch)
                                y_patch = cuda.to_gpu(y_patch)
                            s_loss, s_output = self.model(x=x_patch,
                                                          t=y_patch,
                                                          seg=False)
                            sum_loss += float(
                                cuda.to_cpu(s_loss.data) * self.batchsize)
                            if self.gpu >= 0:
                                s_output = cuda.to_cpu(s_output)
                            pred = copy.deepcopy(
                                (0 < (s_output[0][1] - s_output[0][0])) * 255)
                            # Add segmentation image
                            pre_img[z:z + stride[0], y:y + stride[1],
                                    x:x + stride[2]] += pred[sh[0]:-sh[0],
                                                             sh[1]:-sh[1],
                                                             sh[2]:-sh[2]]
                seg_img = (pre_img > 0) * 1
                seg_img = seg_img[:im_size[0], :im_size[1], :im_size[2]]
            gt = gt[0]
            io.imsave('{}/segimg{}_validation.tif'.format(self.opbase, num),
                      np.array(seg_img * 255).astype(np.uint8))
            io.imsave('{}/gtimg{}_validation.tif'.format(self.opbase, num),
                      np.array(gt * 255).astype(np.uint8))
            countListPos = copy.deepcopy(
                seg_img.astype(np.int16) + gt.astype(np.int16))
            countListNeg = copy.deepcopy(
                seg_img.astype(np.int16) - gt.astype(np.int16))
            TP += len(
                np.where(countListPos.reshape(countListPos.size) == 2)[0])
            TN += len(
                np.where(countListPos.reshape(countListPos.size) == 0)[0])
            FP += len(
                np.where(countListNeg.reshape(countListNeg.size) == 1)[0])
            FN += len(
                np.where(countListNeg.reshape(countListNeg.size) == -1)[0])

        evals = self._evaluator(TP, TN, FP, FN)
        return evals, sum_loss