示例#1
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'dataset-room1_512_16_gt.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0", "mocap0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)

        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            if 'room' not in sequence:
                continue

            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            t_gt = gt[:, 0] / 1e9
            gt = self.interpolate(gt, t_gt, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = SO3.qnorm(torch.Tensor(gt[:, 4:8]).double())
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.zeros_like(p_gt).double()
            v_gt[1:] = (p_gt[1:] - p_gt[:-1]) / self.dt
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # masks with 1 when ground truth is available, 0 otherwise
            masks = dxi_ij.new_ones(dxi_ij.shape[0])
            tmp = np.searchsorted(t_gt, ts[:-mtf])
            diff_t = ts[:-mtf] - t_gt[tmp]
            masks[np.abs(diff_t) > 0.01] = 0

            # save all the sequence
            mondict = {
                'xs': torch.cat((dxi_ij, masks.unsqueeze(1)), 1).float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")

            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")
示例#2
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'MH_01_easy.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0",
                                   "state_groundtruth_estimate0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)
        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            gt = self.interpolate(gt, gt[:, 0] / 1e9, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = torch.Tensor(gt[:, 4:8]).double()
            q_gt = q_gt / q_gt.norm(dim=1, keepdim=True)
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.tensor(gt[:, 8:11]).double()
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # save for all training
            mondict = {
                'xs': dxi_ij.float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")
            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")