def test_bind(self, event, context, name, awsRequestId): log = logger.getLogger(name, stream=self.stream) log.setLevel('DEBUG') @log.bind def handler(event=None, context=None): log.warning('TEST') return {'ok': True} log.debug('BEFORE CONTEXT') handler(event, context) log.debug('AFTER CONTEXT') exp = dedent(f"""\ DEBUG - BEFORE CONTEXT INFO {awsRequestId} EVENT {{ "fizz": "buzz" }} WARNING {awsRequestId} TEST INFO {awsRequestId} RETURN {{ "ok": true }} DEBUG - AFTER CONTEXT """) self.stream.seek(0) ret = self.stream.read() assert ret == exp
''' A simple python module to scan Stock Ticker symbols. ''' import datetime import json import logging import requests from src import logger from src import task from src import worker log = logger.getLogger(__name__) logger.getLogger("requests").setLevel(logging.WARNING) logger.getLogger("urllib").setLevel(logging.WARNING) class StockTask(task.Task): FIN_DATA_URL = 'https://www.alphavantage.co' API_KEY = 'ADD_YOUR_KEY' FIN_DATA_TYPE = 'TIME_SERIES_DAILY_ADJUSTED' def __init__(self, tckr='TSLA'): super(StockTask, self).__init__() self.tckr = tckr self.data = None self.date = datetime.datetime.now().strftime("%Y-%m-%d") def build_url(self): self.url = '%s/query?apikey=%s&function=%s&symbol=%s' % (
Thread Pool are waiting for the tasks to be pushed in the Queue and take the task from queue as soon as they become available which means they don't wait for all the tasks to be pushed and "exeucte" or "run" to be called for tasks to be picked up. ''' import subprocess import pipes from src import logger from src import task from src import worker log = logger.getLogger(__name__) class OvfTask(task.Task): TEMPLATE='' INFRAHOST_IP='' DATASTORE='' PASSWORD='' OVF_CMND='ovftool --acceptAllEulas --datastore=%s --noSSLVerify --name=%s %s vi://root:%s@%s' def __init__(self, name): super(OvfTask, self).__init__() self.name = name def run_command(self, cmd): """ Helper routing for running commands on command line.
} net = net_arch_dict[config.model_type](config).type(dtype) net.loss = losses.l1_loss iterations, epoch = util.load_model(net, config.model_file) # Testing paramters exp_name = os.path.basename(os.path.dirname(config.model_file)) log_dir = os.path.join(config.output_dir, exp_name) h_mat_dir = os.path.join(log_dir, 'h_mats') util.checkDirs([log_dir, h_mat_dir]) config.log_dir = log_dir # Configure logger timestamp = time.strftime("%Y%m%d_%H-%M-%S", time.localtime()) logFile = os.path.join(log_dir, 'test_' + exp_name + '_' + timestamp + '.log') txt_logger = loggerFactory.getLogger(logFile) config.txt_logger = txt_logger data_base_path = config.data_path subdirs = util.globx(data_base_path, ['*']) sub_dirnames = [os.path.basename(subdir) for subdir in subdirs] patch_select = config.patch_select scale = config.scale batch_size = 1 loss = 'l1_loss' ## Parameters for sub_dirname in sub_dirnames: data_group = sub_dirname data_path = os.path.join(data_base_path, data_group)
gloable_spend=spendGloable, lr=lr, eta=eta) logger.info(msg) writer.add_scalar('loss', avgLoss, iter) writer.add_scalar('lr', lr, iter) scheduler.step() outName = osp.join(args.subModelDir, 'final.pth') torch.save(net.cpu().state_dict(), outName) if __name__ == '__main__': args = parseArgs() uniqueName = time.strftime('%y%m%d-%H%M%S') args.subModelDir = osp.join(args.modelDir, uniqueName) args.subTensorboardDir = osp.join(args.tensorboardDir, uniqueName) for subDir in [args.logDir, args.subModelDir, args.subTensorboardDir]: if not osp.exists(subDir): os.makedirs(subDir) logFile = osp.join(args.logDir, uniqueName + '.log') logger = getLogger(logFile) for k, v in args.__dict__.items(): logger.info(k) logger.info(v) main(args, logger)