def run_transformer_train(): """ Transformer training. """ parser = argparse_init() args, _ = parser.parse_known_args() if args.device_target == "Ascend": context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) else: context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False) if args.distribute == "true": if args.device_target == "Ascend": device_num = args.device_num D.init('hccl') else: D.init('nccl') device_num = D.get_group_size() rank = get_rank() args.device_id = rank context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, device_num=device_num) rank_id = args.device_id % device_num save_ckpt_path = os.path.join(args.save_checkpoint_path, 'ckpt_' + str(get_rank()) + '/') else: device_num = 1 rank_id = 0 save_ckpt_path = os.path.join(args.save_checkpoint_path, 'ckpt_0/') dataset = create_transformer_dataset( epoch_count=1, rank_size=device_num, rank_id=rank_id, do_shuffle=args.do_shuffle, dataset_path=args.data_path, bucket_boundaries=args.bucket_boundaries, device_target=args.device_target) if args.device_target == "Ascend": netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True) else: netwithloss = TransformerNetworkWithLoss(transformer_net_cfg_gpu, True) if args.checkpoint_path: parameter_dict = load_checkpoint(args.checkpoint_path) load_param_into_net(netwithloss, parameter_dict) hidden_size = transformer_net_cfg.hidden_size if args.device_target == "Ascend" \ else transformer_net_cfg_gpu.hidden_size learning_rate = cfg.lr_schedule.learning_rate if args.device_target == "Ascend" \ else 1.0 lr = Tensor( create_dynamic_lr( schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay", training_steps=dataset.get_dataset_size() * args.epoch_size, learning_rate=learning_rate, warmup_steps=cfg.lr_schedule.warmup_steps, hidden_size=hidden_size, start_decay_step=cfg.lr_schedule.start_decay_step, min_lr=cfg.lr_schedule.min_lr), mstype.float32) if args.device_target == "GPU" and cfg.transformer_network == "large": optimizer = Adam(netwithloss.trainable_params(), lr, beta2=cfg.optimizer_adam_beta2) else: optimizer = Adam(netwithloss.trainable_params(), lr) callbacks = [ TimeMonitor(dataset.get_dataset_size()), LossCallBack(rank_id=rank_id) ] if args.enable_save_ckpt == "true": if device_num == 1 or (device_num > 1 and rank_id == 0): if args.device_target == "Ascend": ckpt_config = CheckpointConfig( save_checkpoint_steps=args.save_checkpoint_steps, keep_checkpoint_max=args.save_checkpoint_num) else: ckpt_config = CheckpointConfig( save_checkpoint_steps=dataset.get_dataset_size(), keep_checkpoint_max=args.save_checkpoint_num) ckpoint_cb = ModelCheckpoint(prefix='transformer', directory=save_ckpt_path, config=ckpt_config) callbacks.append(ckpoint_cb) if args.enable_lossscale == "true": scale_manager = DynamicLossScaleManager( init_loss_scale=cfg.init_loss_scale_value, scale_factor=cfg.scale_factor, scale_window=cfg.scale_window) update_cell = scale_manager.get_update_cell() netwithgrads = TransformerTrainOneStepWithLossScaleCell( netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = TransformerTrainOneStepCell(netwithloss, optimizer=optimizer) netwithgrads.set_train(True) model = Model(netwithgrads) model.train(args.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=False)
def run_transformer_train(): """ Transformer training. """ parser = argparse_init() args, _ = parser.parse_known_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False) if args.distribute == "true": device_num = args.device_num context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, parameter_broadcast=True, device_num=device_num) D.init() rank_id = args.device_id % device_num else: device_num = 1 rank_id = 0 dataset, repeat_count = create_transformer_dataset( epoch_count=args.epoch_size, rank_size=device_num, rank_id=rank_id, do_shuffle=args.do_shuffle, enable_data_sink=args.enable_data_sink, dataset_path=args.data_path) netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True) if args.checkpoint_path: parameter_dict = load_checkpoint(args.checkpoint_path) load_param_into_net(netwithloss, parameter_dict) lr = Tensor( create_dynamic_lr( schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay", training_steps=dataset.get_dataset_size() * args.epoch_size, learning_rate=cfg.lr_schedule.learning_rate, warmup_steps=cfg.lr_schedule.warmup_steps, hidden_size=transformer_net_cfg.hidden_size, start_decay_step=cfg.lr_schedule.start_decay_step, min_lr=cfg.lr_schedule.min_lr), mstype.float32) optimizer = Adam(netwithloss.trainable_params(), lr) callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack()] if args.enable_save_ckpt == "true": ckpt_config = CheckpointConfig( save_checkpoint_steps=args.save_checkpoint_steps, keep_checkpoint_max=args.save_checkpoint_num) ckpoint_cb = ModelCheckpoint(prefix='transformer', directory=args.save_checkpoint_path, config=ckpt_config) callbacks.append(ckpoint_cb) if args.enable_lossscale == "true": scale_manager = DynamicLossScaleManager( init_loss_scale=cfg.init_loss_scale_value, scale_factor=cfg.scale_factor, scale_window=cfg.scale_window) update_cell = scale_manager.get_update_cell() netwithgrads = TransformerTrainOneStepWithLossScaleCell( netwithloss, optimizer=optimizer, scale_update_cell=update_cell) else: netwithgrads = TransformerTrainOneStepCell(netwithloss, optimizer=optimizer) netwithgrads.set_train(True) model = Model(netwithgrads) model.train(repeat_count, dataset, callbacks=callbacks, dataset_sink_mode=(args.enable_data_sink == "true"))