示例#1
0
def test_deeplabv3_1p():
    start_time = time.time()
    epoch_size = 100
    args_opt = argparse.Namespace(base_size=513, crop_size=513, batch_size=2)
    args_opt.base_size = config.crop_size
    args_opt.crop_size = config.crop_size
    args_opt.batch_size = config.batch_size
    train_dataset = create_dataset(args_opt, data_url, 1, config.batch_size,
                                   usage="eval")
    dataset_size = train_dataset.get_dataset_size()
    callback = LossCallBack(dataset_size)
    net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
                             infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
                             decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
                             fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
    net.set_train()
    model_fine_tune(net, 'layer')
    loss = OhemLoss(config.seg_num_classes, config.ignore_label)
    opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
    model = Model(net, loss, opt)
    model.train(epoch_size, train_dataset, callback)
    print(time.time() - start_time)
    print("expect loss: ", callback.loss)
    print("expect time: ", callback.time)
    expect_loss = 0.92
    expect_time = 40
    assert callback.loss.asnumpy() <= expect_loss
    assert callback.time <= expect_time
def model_fine_tune(flags, train_net, fix_weight_layer):
    checkpoint_path = flags.checkpoint_url
    if checkpoint_path is None:
        return
    param_dict = load_checkpoint(checkpoint_path)
    load_param_into_net(train_net, param_dict)
    for para in train_net.trainable_params():
        if fix_weight_layer in para.name:
            para.requires_grad = False

if __name__ == "__main__":
    start_time = time.time()
    epoch_size = 3
    args_opt.base_size = config.crop_size
    args_opt.crop_size = config.crop_size
    train_dataset = create_dataset(args_opt, args_opt.data_url, 1, config.batch_size,
                                   usage="train", shuffle=False)
    dataset_size = train_dataset.get_dataset_size()
    callback = LossCallBack(dataset_size)
    net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
                             infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
                             decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
                             fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
    net.set_train()
    model_fine_tune(args_opt, net, 'layer')
    loss = OhemLoss(config.seg_num_classes, config.ignore_label)
    opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
    model = Model(net, loss, opt)
    model.train(epoch_size, train_dataset, callback)
    print(time.time() - start_time)
    print("expect loss: ", callback.loss / 3)
    print("expect time: ", callback.time)
示例#3
0
from src.config import config


parser = argparse.ArgumentParser(description="Deeplabv3 evaluation")
parser.add_argument('--epoch_size', type=int, default=2, help='Epoch size.')
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument('--batch_size', type=int, default=2, help='Batch size.')
parser.add_argument('--data_url', required=True, default=None, help='Evaluation data url')
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')

args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
print(args_opt)


if __name__ == "__main__":
    args_opt.crop_size = config.crop_size
    args_opt.base_size = config.crop_size
    eval_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="eval")
    net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
                             infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
                             decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
                             fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
    param_dict = load_checkpoint(args_opt.checkpoint_url)
    load_param_into_net(net, param_dict)
    mIou = MiouPrecision(config.seg_num_classes)
    metrics = {'mIou': mIou}
    loss = OhemLoss(config.seg_num_classes, config.ignore_label)
    model = Model(net, loss, metrics=metrics)
    model.eval(eval_dataset)
示例#4
0
文件: train.py 项目: xyg320/mindspore
    load_param_into_net(train_net, param_dict)
    for para in train_net.trainable_params():
        if fix_weight_layer in para.name:
            para.requires_grad = False


if __name__ == "__main__":
    if args_opt.distribute == "true":
        context.set_auto_parallel_context(
            parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
        init()
    args_opt.base_size = config.crop_size
    args_opt.crop_size = config.crop_size
    train_dataset = create_dataset(args_opt,
                                   args_opt.data_url,
                                   config.epoch_size,
                                   config.batch_size,
                                   usage="train")
    dataset_size = train_dataset.get_dataset_size()
    time_cb = TimeMonitor(data_size=dataset_size)
    callback = [time_cb, LossCallBack()]
    if config.enable_save_ckpt:
        config_ck = CheckpointConfig(
            save_checkpoint_steps=config.save_checkpoint_steps,
            keep_checkpoint_max=config.save_checkpoint_num)
        ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3',
                                     config=config_ck)
        callback.append(ckpoint_cb)
    net = deeplabv3_resnet50(
        config.seg_num_classes,
        [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
示例#5
0
    if args_opt.distribute == "true":
        context.set_auto_parallel_context(
            parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
        init()
    args_opt.base_size = config.crop_size
    args_opt.crop_size = config.crop_size

    import moxing as mox
    mox.file.copy_parallel(src_url=args_opt.data_url, dst_url='voc2012/')
    mox.file.copy_parallel(src_url=args_opt.checkpoint_url,
                           dst_url='checkpoint/')

    # train
    train_dataset = create_dataset(args_opt,
                                   data_path,
                                   config.epoch_size,
                                   config.batch_size,
                                   usage="train")
    dataset_size = train_dataset.get_dataset_size()
    time_cb = TimeMonitor(data_size=dataset_size)
    callback = [time_cb, LossCallBack()]
    if config.enable_save_ckpt:
        config_ck = CheckpointConfig(
            save_checkpoint_steps=config.save_checkpoint_steps,
            keep_checkpoint_max=config.save_checkpoint_num)
        ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3',
                                     config=config_ck)
        callback.append(ckpoint_cb)
    net = deeplabv3_resnet50(
        config.seg_num_classes,
        [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],