def read_cropped_image_array(self): # Assert Data Exists in GCS Bucket folder_exists = mf.gcs_subfolder_exists(bucket_name=self.bucket_name, subfolder_name=self.class_name) assert_msg = f"Data for image class '{self.class_name} doesn't exist. Create it with self.cropped_obj_images_to_gcs() method'" assert folder_exists, assert_msg # Read and Return Images image_save_name = f'{self.processed_bucket_subfolder}{self.class_name}/{self.processed_array_save_name}' img_array = mf.read_gcs_numpy_array(bucket_name=self.bucket_name, file_name=image_save_name) return img_array
from tensorflow.keras.callbacks import LearningRateScheduler, ReduceLROnPlateau from tensorflow.keras.optimizers import Adam # Import Project Modules from src import config_data_processing as cdp from src import image_manipulation as imm from src import misc_functions as mf from src import modeling as m ### Data Processing: Read Cropped Images for Classification ############################################################################### # Cropped 'Chest of drawers' Images get_class1 = 'Chest of drawers' x1 = mf.read_gcs_numpy_array( bucket_name=cdp.config_source_bucket_name, file_name=f'processed_files/{get_class1}/train_images_cropped.npy') plt.imshow(x1[0]) # Cropped 'Fireplace' Images get_class2 = 'Fireplace' x2 = mf.read_gcs_numpy_array( bucket_name=cdp.config_source_bucket_name, file_name=f'processed_files/{get_class2}/train_images_cropped.npy') plt.imshow(x2[0]) # Cropped 'Sofa bed' Images get_class3 = 'Sofa bed' x3 = mf.read_gcs_numpy_array( bucket_name=cdp.config_source_bucket_name, file_name=f'processed_files/{get_class3}/train_images_cropped.npy')