def dream(self): # Process image and return variable self.processed_image = preprocess_image(self.created_image, True) # Define optimizer for the image # Earlier layers need higher learning rates to visualize whereas layer layers need less optimizer = SGD([self.processed_image], lr=12, weight_decay=1e-4) for i in range(1, 251): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = self.processed_image for index, layer in enumerate(self.model): # Forward x = layer(x) # Only need to forward until we the selected layer is reached if index == self.selected_layer: break # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = -torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) # Save image every 20 iteration if i % 10 == 0: print(self.created_image.shape) im_path = '../generated/ddream_l' + str(self.selected_layer) + \ '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg' save_image(self.created_image, im_path)
def generate(self): initial_learning_rate = 6 for i in range(1, 150): # Process image and return variable self.processed_image = preprocess_image(self.created_image) # Define optimizer for the image optimizer = SGD([self.processed_image], lr=initial_learning_rate) # Forward output = self.model(self.processed_image) # Target specific class class_loss = -output[0, self.target_class] print('Iteration:', str(i), 'Loss', "{0:.2f}".format(class_loss.data.numpy()[0])) # Zero grads self.model.zero_grad() # Backward class_loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) # Save image cv2.imwrite('../generated/c_specific_iteration_' + str(i) + '.jpg', self.created_image) return self.processed_image
def generate_inverted_image_specific_layer(self, input_image, img_size, target_layer=3): # Generate a random image which we will optimize opt_img = Variable(1e-1 * torch.randn(1, 3, img_size, img_size), requires_grad=True) # Define optimizer for previously created image optimizer = SGD([opt_img], lr=1e4, momentum=0.9) # Get the output from the model after a forward pass until target_layer # with the input image (real image, NOT the randomly generated one) input_image_layer_output = \ self.get_output_from_specific_layer(input_image, target_layer) # Alpha regularization parametrs # Parameter alpha, which is actually sixth norm alpha_reg_alpha = 6 # The multiplier, lambda alpha alpha_reg_lambda = 1e-7 # Total variation regularization parameters # Parameter beta, which is actually second norm tv_reg_beta = 2 # The multiplier, lambda beta tv_reg_lambda = 1e-8 for i in range(201): optimizer.zero_grad() # Get the output from the model after a forward pass until target_layer # with the generated image (randomly generated one, NOT the real image) output = self.get_output_from_specific_layer(opt_img, target_layer) # Calculate euclidian loss euc_loss = 1e-1 * self.euclidian_loss( input_image_layer_output.detach(), output) # Calculate alpha regularization reg_alpha = alpha_reg_lambda * self.alpha_norm( opt_img, alpha_reg_alpha) # Calculate total variation regularization reg_total_variation = tv_reg_lambda * self.total_variation_norm( opt_img, tv_reg_beta) # Sum all to optimize loss = euc_loss + reg_alpha + reg_total_variation # Step loss.backward() optimizer.step() # Generate image every 5 iterations if i % 5 == 0: print('Iteration:', str(i), 'Loss:', loss.data.numpy()) recreated_im = recreate_image(opt_img) im_path = '../generated/Inv_Image_Layer_' + str(target_layer) + \ '_Iteration_' + str(i) + '.jpg' save_image(recreated_im, im_path) # Reduce learning rate every 40 iterations if i % 40 == 0: for param_group in optimizer.param_groups: param_group['lr'] *= 1 / 10
def visualise_layer_with_hooks(self): # Hook the selected layer self.hook_layer() # 여기서 선택된 필터 # Generate a random image random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3))) # Process image and return variable processed_image = preprocess_image( random_image, False) # 이미지 제로민 노말라이즈, torch tensor 형태로 만듬 # Define optimizer for the image optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6) for i in range(1, 31): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = processed_image for index, layer in enumerate(self.model): # Forward pass layer by layer # x is not used after this point because it is only needed to trigger # the forward hook function x = layer(x) # print(">>>",x.size()) => 여기서 forward 해서 계속 feature map이 나온다. # Only need to forward until the selected layer is reached if index == self.selected_layer: # (forward hook function triggered) => for 문나갈 떄 hook trigger 된다. break # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter # print(self.conv_output.size()) loss = -torch.mean( self.conv_output) # 특정 filter 의 output의 mean을 backprob으로 미니마이즈 exit() print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image( processed_image) # 다시 이미지 형태로 복원 # Save image if i % 5 == 0: im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \ '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg' save_image(self.created_image, im_path)
def visualise_layer_without_hooks(self): # Process image and return variable # Generate a random image random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3))) # Process image and return variable processed_image = preprocess_image(random_image, False) # Define optimizer for the image optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6) for i in range(1, 31): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = processed_image for index, layer in enumerate(self.model): # Forward pass layer by layer x = layer(x) if index == self.selected_layer: # Only need to forward until the selected layer is reached # Now, x is the output of the selected layer break # Here, we get the specific filter from the output of the convolution operation # x is a tensor of shape 1x512x28x28.(For layer 17) # So there are 512 unique filter outputs # Following line selects a filter from 512 filters so self.conv_output will become # a tensor of shape 28x28 self.conv_output = x[0, self.selected_filter] # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = -torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(processed_image) # Save image if i % 5 == 0: im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \ '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg' save_image(self.created_image, im_path)
def visualise_layer_without_hooks(self): # Process image and return variable self.processed_image = preprocess_image(self.created_image) # Define optimizer for the image # Earlier layers need higher learning rates to visualize whereas later layers need less optimizer = SGD([self.processed_image], lr=5, weight_decay=1e-6) for i in range(1, 51): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = self.processed_image for index, layer in enumerate(self.model): # Forward pass layer by layer x = layer(x) if index == self.selected_layer: # Only need to forward until the selected layer is reached # Now, x is the output of the selected layer break # Here, we get the specific filter from the output of the convolution operation # x is a tensor of shape 1x512x28x28.(For layer 17) # So there are 512 unique filter outputs # Following line selects a filter from 512 filters so self.conv_output will become # a tensor of shape 28x28 self.conv_output = x[0, self.selected_filter] # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()[0])) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) # Save image if i % 5 == 0: cv2.imwrite( 'generated/layer_vis_l' + str(self.selected_layer) + '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg', self.created_image)
def visualise_layer_with_hooks(self): # Hook the selected layer self.hook_layer() # Process image and return variable self.processed_image = preprocess_image(self.created_image) # Define optimizer for the image # Earlier layers need higher learning rates to visualize whereas later layers need less optimizer = SGD([self.processed_image], lr=5, weight_decay=1e-6) for i in range(1, 51): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = self.processed_image for index, layer in enumerate(self.model): # Forward pass layer by layer # x is not used after this point because it is only needed to trigger # the forward hook function x = layer(x) # Only need to forward until the selected layer is reached if index == self.selected_layer: # (forward hook function triggered) break # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()[0])) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) # Save image if i % 5 == 0: cv2.imwrite( 'generated/layer_vis_l' + str(self.selected_layer) + '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg', self.created_image)
tolerance = vis_args.RESULTS.POINTING_GAME.tolerance pg = PointingGame(vis_args.MODEL.n_classes, tolerance=tolerance) for f, path in tqdm.tqdm(zip(files, paths)): img = open_image(path) prep_img = preprocess_image(img, h=h, w=w) cam, pred = gcv2.generate_cam(prep_img, vis_args.DATASET.target_class) guided_grads = GBP.generate_gradients(prep_img, vis_args.DATASET.target_class) cam_gb = guided_grad_cam(cam, guided_grads) bw_cam_gb = convert_to_grayscale(cam_gb) if vis_args.RESULTS.POINTING_GAME.state: boxes = get_boxes(vis_args.RESULTS.DRAW_GT_BBOX.gt_src, f, img) hit = pg.evaluate(boxes, bw_cam_gb.squeeze()) _ = pg.accumulate(hit[0], 1) prep_img = recreate_image(prep_img) r = alpha * bw_cam_gb + (1 - alpha) * prep_img r = ((r - r.min()) / (r.max() - r.min()) * 255).astype(np.float32) custom_save_gradient_images(bw_cam_gb, vis_args.RESULTS.dir, f, obj="bw_ggradcam") if vis_args.RESULTS.POINTING_GAME.state: print(pg.print_stats()) print('Guided grad cam completed')