frequenciesAll, maxFacilitationAll = simulate_steady_state_freq(numpy.arange(1.,100.,1.), flag='max') # Recovery spike revoceryTimes, relativeRecovery = simulate_recovery(numpy.arange(100,5000,200)) # Steady state conductance 0-1 frequencies frequenciesZoom, relativeFacilitationZoom = simulate_steady_state_freq(numpy.arange(0.1,1.,.1)) # DISPLAY plot_settings.set_mode(mode='by_fontsize', w = 750.0, h = 400.0, fontsize=12) font_size_text = 9 fig = pylab.figure( facecolor = 'w' ) ax_list = [] ax_list.append( MyAxes(fig, [ .1, .4, .18, .26 ] ) ) # text box ax_list.append( MyAxes(fig, [ .35, .6, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .73, .6, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .35, .1, .24, .34 ] ) ) # ax_list.append( MyAxes(fig, [ .73, .1, .24, .34 ] ) ) # # Text ax=ax_list[0] plot_text(ax) # Example steady state all ax=ax_list[1] plot_steady_state_freq(ax, frequenciesAll, steadyStateFacilitationAll) # Example steady state zoom ax=ax_list[2]
save_result_at) else: print 'hej' #nbNeurons1, meanRates1, meanRatesStd1, info_string = misc.pickle_load(save_result_at) # DISPLAY plot_settings.set_mode(pylab, mode='by_fontsize', w=1100.0, h=450.0, fontsize=12) font_size_text = 8 fig = pylab.figure(facecolor='w') ax_list = [] ax_list.append(MyAxes(fig, [.075, .37, .135, .26])) # text box ax_list.append(MyAxes(fig, [.26, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.53, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.26, .1, .165 * 2.312, .34])) # ax_list.append(MyAxes(fig, [.8, .6, .165, .34])) # #ax_list.append( MyAxes(fig, [ .53, .1, .165, .34 ] ) ) # ax_list.append(MyAxes(fig, [.8, .1, .165, .34])) # # Text ax = ax_list[0] plot_text(ax, info_string) ax = ax_list[1] plot_example_raster_MSN(ax, MSN_spikes_and_ids) ax = ax_list[2]
start_rec ) names=names[0:15] model_params['conns'].update({'STN_SNR':{'syn':'STN_SNR_ampa_p3'}}) save_result_at=OUTPUT_PATH+'/simulate_sensitivity_STN_plast.plk' d2, data_rate_change2, dp2, names2=simulate_sensitivity([1, 1], save_result_at,n_exp, params_msn_d1, params_msn_d2, params_stn, synapse_models, model_params, sim_time, start_rec ) #Inspect results plot_settings.set_mode(pylab, mode='by_fontsize', w = 1100.0, h = 450.0+275.0, fontsize=16) font_size_text = 8 fig = pylab.figure( facecolor = 'w' ) ax_list = [] ax_list.append( MyAxes(fig, [ .075, .37, .135, .26 ] ) ) # text box ax_list.append( MyAxes(fig, [ .26, .7, .4, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .53, .7, .165, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .8, .7, .165, .2 ] ) ) # ax_list.append( MyAxes(fig, [ .26, .3, .4, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .53, .4, .165, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .8, .4, .165, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .26, .1, .165, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .53, .1, .165, .2 ] ) ) # #ax_list.append( MyAxes(fig, [ .8, .1, .165, .2 ] ) ) # ax=ax_list[1] plot_data(ax, data_rate_change[0], 'Static STN-SNr', names, show_label=False) ax=ax_list[1]
my_nest.Connect(sgs, [MSN[0]], model=syn_model) # connect MSNs T = 2000 # simulation time my_nest.Simulate(T) # simulate MSN.get_signal('v', 'V_m') pylab.close('all') # display # Create figure where figsize(width,height) and figure dimenstions window # width = figsize(width) x dpi and window hight = figsize(hight) x dpi plot_settings.set_mode(mode='dynamic', w=700.0, h=400.0) font_size_text = 10 fig = pylab.figure(facecolor='w') pylab.suptitle('MSN to MSN') ax_list = [] ax_list.append(MyAxes(fig, [.1, .37, .2, .26])) # text box ax_list.append(MyAxes(fig, [.50, .15, .40, .65])) # voltage trace ds = my_nest.GetDefaults(syn_model) sn = my_nest.GetStatus(MSN[:])[0] ax = ax_list[0] # Text box tb = '' tb = tb + ' %6s %7s %3s \n' % ('Synapse model:', ds['synapsemodel'], ' ') tb = tb + ' \n ' tb = tb + ' %6s %7s %3s \n' % ('Delay:', ds['delay'], 'ms') tb = tb + ' %6s %7s %3s \n' % ('Weight:', ds['weight'], 'nS') tb = tb + ' \n ' tb = tb + ' %6s %7s %3s \n' % ('Decay:', sn['GABAA_2_Tau_decay'], 'ms') tb = tb + ' %6s %7s %3s \n' % ('E_rev:', sn['GABAA_2_E_rev'], 'mV')
#hzs=[0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2] hzs = range(1, 48, 5) signal_rates = simulate_signal_rates(load=True, hzs=hzs) # DISPLAY plot_settings.set_mode(pylab, mode='by_fontsize', w=1100.0, h=450.0, fontsize=12) font_size_text = 8 fig = pylab.figure(facecolor='w') ax_list = [] ax_list.append(MyAxes(fig, [.075, .37, .135, .26])) # text box ax_list.append(MyAxes(fig, [.26, .6, .165, .34])) # #ax_list.append( MyAxes(fig, [ .53, .6, .165, .34 ] ) ) # #ax_list.append( MyAxes(fig, [ .8, .6, .165, .34 ] ) ) # #ax_list.append( MyAxes(fig, [ .26, .1, .165, .34 ] ) ) # #ax_list.append( MyAxes(fig, [ .53, .1, .165, .34 ] ) ) # # ax_list.append( MyAxes(fig, [ .8, .1, .165, .34 ] ) ) # # Text ax = ax_list[0] plot_text(ax, info_string) ax = ax_list[1] plot_signal_rates(ax, hzs, signal_rates) pylab.show()
sim_time=20000 save_at=OUTPUT_PATH+'/simulate_network_fmin.plk' x=fmin(0,save_at) #x=[215, 0.08] STN_target1, e1=restriction_1(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) STN_target2, e2=restriction_2(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) STN_target3 = GPE_46_hz(gpe_rate, n_ctx, n_gpe, x, neuron_model, syn_models) plot_settings.set_mode(pylab, mode='by_fontsize', w = 500.0, h = 500.0, fontsize=8) font_size_text = 8 fig = pylab.figure( facecolor = 'w') ax_list=[] ax_list.append( MyAxes(fig, [ .1, .7, .8, .2 ] ) ) # text box ax_list.append( MyAxes(fig, [ .1, .4, .8, .2 ] ) ) # ax_list.append( MyAxes(fig, [ .1, .1, .8, .2 ] ) ) # ax=ax_list[0] plot_example(ax, STN_target1,sim_time, x, type='No GPE') ax=ax_list[1] plot_example(ax, STN_target2, sim_time, x, type='Normal') ax=ax_list[2] plot_example(ax, STN_target3, sim_time, x, type='GPE rate at '+str(30*1.55)) pylab.show()
STN_example_rebound_spike_5, s = simulate_example_rebound_spike([-70.], time=300.) STN_example_rebound_spike_6, s = simulate_example_rebound_spike([-100.], time=300.) # DISPLAY plot_settings.set_mode(pylab, mode='by_fontsize', w=1100.0, h=450.0, fontsize=16) font_size_text = 8 fig = pylab.figure(facecolor='w') ax_list = [] ax_list.append(MyAxes(fig, [.075, .37, .135, .26])) # text box ax_list.append(MyAxes(fig, [.26, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.53, .6, .165, .34])) # ax_list.append(MyAxes(fig, [.8, .6, .165, .075])) # ax_list.append(MyAxes(fig, [.26, .3, .165, .075])) # ax_list.append(MyAxes(fig, [.53, .3, .165, .075])) # ax_list.append(MyAxes(fig, [.8, .3, .165, .075])) # ax_list.append(MyAxes(fig, [.26, .1, .165, .075])) # ax_list.append(MyAxes(fig, [.53, .1, .165, .075])) # ax_list.append(MyAxes(fig, [.8, .1, .165, .075])) # # Text ax = ax_list[0] plot_text(ax, infoString) # Example #ax=ax_list[1]
SNR_mean_rate.load_signal('s') else: SNR_example_plot.get_signal('v', 'V_m', stop=simTime) SNR_mean_rate.get_signal('s', start=1, stop=simTime) plot_settings.set_mode(mode='dynamic', w=1100.0, h=400.0) font_size_text = 7 fig = pylab.figure(facecolor='w') #fig = pylab.figure( figsize = ( 34, 12 ), dpi = 50, facecolor='w' ) nb_yticks_rp = 4 # number of ticks raster plots nb_yticks_sr = 3 # number of ticks spike rate plots binSize = 50 # spike rate bin ax_list = [] ax_list.append(MyAxes(fig, [0.05, .37, .09, .26])) # text box ax_list.append(MyAxes(fig, [0.22, .6, .2, .3])) # MSNs raster plot ax_list.append(MyAxes(fig, [0.22, .12, .2, .3])) # MSNs rates ax_list.append(MyAxes(fig, [0.57, .87, .2, .05])) # SNR trace plastic ax_list.append(MyAxes(fig, [0.57, .81, .2, .05])) # SNR trace static w ax_list.append(MyAxes(fig, [0.57, .74, .2, .05])) # SNR trace static s ax_list.append(MyAxes(fig, [0.57, .67, .2, .05])) # SNR trace static s ax_list.append(MyAxes(fig, [0.57, .6, .2, .05])) # SNR trace static s ax_list.append(MyAxes(fig, [0.57, .12, .2, .3])) # SNR rates #for ax in ax_list: fig.add_axes(ax) # Text ax = ax_list[0] my_nest.ResetKernel() SNR = create_output_population( nOutput,
if 0: groups_dic=simulate_network(params_msn_d1, params_msn_d2, params_stn, synapse_models, sim_time=sim_time, seed=1, I_e_add={'SNR':300, 'STN':0,'GPE':30}, threads=4, start_rec=500.,model_params=model_params) misc.pickle_save(groups_dic, save_result_at) else: groups_dic=misc.pickle_load(save_result_at) #Inspect results plot_settings.set_mode(pylab, mode='by_fontsize', w = 1100.0, h = 450.0+175.0, fontsize=12) font_size_text = 8 fig = pylab.figure( facecolor = 'w' ) ax_list = [] ax_list.append( MyAxes(fig, [ .26-0.21, .85-0.05, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .80-.25, .85-0.05, 0.2 + .165+0.05, .2-0.05 +0.02] ) ) # ax_list.append( MyAxes(fig, [ .26-0.21, .65-0.04, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .80-.25, .65-0.04, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .26-0.21, .45-0.03, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .80-.25, .45-0.03, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .26-0.21, .25-0.02, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .80-.25, .25-0.02, 0.2 + .165+0.05, .2-0.05 +0.02] ) ) # ax_list.append( MyAxes(fig, [ .26-0.21, .06, 0.2 + .165+0.05, .2 -0.05+0.02] ) ) # ax_list.append( MyAxes(fig, [ .80-.25, .06, 0.2 + .165+0.05, .2-0.05+0.02 ] ) ) # ax=ax_list[0] plot_example_raster(ax, groups_dic['MSN_D1'], '$MSN_{D1}$') ax=ax_list[1] plot_example_firing_rate(ax, groups_dic['MSN_D1'], '$MSN_{D1}$',ylim=[0,35])