def __call__(self, parameters): print(parameters) numWolves = parameters['numWolves'] numSheep = 1 ## MDP Env # state is all multi agent state # action is all multi agent action xBoundary = [0,600] yBoundary = [0,600] numOfAgent = numWolves + numSheep reset = Reset(xBoundary, yBoundary, numOfAgent) possibleSheepIds = list(range(numSheep)) possibleWolvesIds = list(range(numSheep, numSheep + numWolves)) getSheepStatesFromAll = lambda state: np.array(state)[possibleSheepIds] getWolvesStatesFromAll = lambda state: np.array(state)[possibleWolvesIds] killzoneRadius = 50 isTerminal = IsTerminal(killzoneRadius, getSheepStatesFromAll, getWolvesStatesFromAll) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity(xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame(stayInBoundaryByReflectVelocity) numFramesToInterpolate = 3 transit = TransitWithTerminalCheckOfInterpolation(numFramesToInterpolate, interpolateOneFrame, isTerminal) maxRunningSteps = 52 timeCost = 1/maxRunningSteps terminalBonus = 1 rewardFunction = RewardFunctionByTerminal(timeCost, terminalBonus, isTerminal) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectory(maxRunningSteps, isTerminal, reset, forwardOneStep) ## MDP Policy # Sheep Part # Sheep Policy Function numSheepPolicyStateSpace = 2 * (numWolves + 1) sheepActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 12 sheepIndividualActionSpace = list(map(tuple, np.array(sheepActionSpace) * preyPowerRatio)) numSheepActionSpace = len(sheepIndividualActionSpace) regularizationFactor = 1e-4 generateSheepModel = GenerateModel(numSheepPolicyStateSpace, numSheepActionSpace, regularizationFactor) sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] sheepNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepModel = generateSheepModel(sharedWidths * sheepNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepModelPath = os.path.join('..', '..', 'data', 'preTrainModel', 'agentId=0.'+str(numWolves)+'_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=110_trainSteps=50000') sheepNNModel = restoreVariables(initSheepModel, sheepModelPath) sheepPolicy = ApproximatePolicy(sheepNNModel, sheepIndividualActionSpace) # Sheep Generate Action softParameterInPlanningForSheep = 2.5 softPolicyInPlanningForSheep = SoftDistribution(softParameterInPlanningForSheep) softenSheepPolicy = lambda relativeAgentsStatesForSheepPolicy: softPolicyInPlanningForSheep(sheepPolicy(relativeAgentsStatesForSheepPolicy)) sheepChooseActionMethod = sampleFromDistribution sheepSampleActions = [SampleActionOnFixedIntention(selfId, possibleWolvesIds, sheepPolicy, sheepChooseActionMethod) for selfId in possibleSheepIds] # Wolves Part # Policy Likelihood function: Wolf Centrol Control NN Policy Given Intention numWolvesStateSpaces = [2 * (numInWe + 1) for numInWe in range(2, numWolves + 1)] actionSpace = [(10, 0), (0, 10), (-10, 0), (0, -10)] predatorPowerRatio = 8 wolfIndividualActionSpace = list(map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesCentralControlActionSpaces = [list(it.product(wolfIndividualActionSpace, repeat = numInWe)) for numInWe in range(2, numWolves + 1)] numWolvesCentralControlActionSpaces = [len(wolvesCentralControlActionSpace) for wolvesCentralControlActionSpace in wolvesCentralControlActionSpaces] regularizationFactor = 1e-4 generateWolvesCentralControlModels = [GenerateModel(numStateSpace, numActionSpace, regularizationFactor) for numStateSpace, numActionSpace in zip(numWolvesStateSpaces, numWolvesCentralControlActionSpaces)] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolvesCentralControlModels = [generateWolvesCentralControlModel(sharedWidths * wolfNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generateWolvesCentralControlModel in generateWolvesCentralControlModels] NNNumSimulations = 250 wolvesModelPaths = [os.path.join('..', '..', 'data', 'preTrainModel', 'agentId='+str(len(actionSpace) * np.sum([10**_ for _ in range(numInWe)]))+'_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations='+str(NNNumSimulations)+'_trainSteps=50000') for numInWe in range(2, numWolves + 1)] print(wolvesModelPaths) wolvesCentralControlNNModels = [restoreVariables(initWolvesCentralControlModel, wolvesModelPath) for initWolvesCentralControlModel, wolvesModelPath in zip(initWolvesCentralControlModels, wolvesModelPaths)] wolvesCentralControlPolicies = [ApproximatePolicy(NNModel, actionSpace) for NNModel, actionSpace in zip(wolvesCentralControlNNModels, wolvesCentralControlActionSpaces)] centralControlPolicyListBasedOnNumAgentsInWe = wolvesCentralControlPolicies # 0 for two agents in We, 1 for three agents... softParameterInInference = 1 softPolicyInInference = SoftDistribution(softParameterInInference) policyForCommittedAgentsInInference = PolicyForCommittedAgent(centralControlPolicyListBasedOnNumAgentsInWe, softPolicyInInference, getStateThirdPersonPerspective) calCommittedAgentsPolicyLikelihood = CalCommittedAgentsPolicyLikelihood(policyForCommittedAgentsInInference) wolfLevel2ActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] wolfLevel2IndividualActionSpace = list(map(tuple, np.array(wolfLevel2ActionSpace) * predatorPowerRatio)) wolfLevel2CentralControlActionSpace = list(it.product(wolfLevel2IndividualActionSpace)) numWolfLevel2ActionSpace = len(wolfLevel2CentralControlActionSpace) regularizationFactor = 1e-4 generatewolfLevel2Models = [GenerateModel(numStateSpace, numWolfLevel2ActionSpace, regularizationFactor) for numStateSpace in numWolvesStateSpaces] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfLevel2NNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initwolfLevel2Models = [generatewolfLevel2Model(sharedWidths * wolfLevel2NNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generatewolfLevel2Model in generatewolfLevel2Models] wolfLevel2ModelPaths = [os.path.join('..', '..', 'data', 'preTrainModel', 'agentId=1.'+str(numInWe)+'_depth=9_hierarchy=2_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations='+str(NNNumSimulations)+'_trainSteps=50000') for numInWe in range(2, numWolves + 1)] wolfLevel2NNModels = [restoreVariables(initwolfLevel2Model, wolfLevel2ModelPath) for initwolfLevel2Model, wolfLevel2ModelPath in zip(initwolfLevel2Models, wolfLevel2ModelPaths)] wolfLevel2Policies = [ApproximatePolicy(wolfLevel2NNModel, wolfLevel2CentralControlActionSpace) for wolfLevel2NNModel in wolfLevel2NNModels] level2PolicyListBasedOnNumAgentsInWe = wolfLevel2Policies # 0 for two agents in We, 1 for three agents... softPolicy = SoftDistribution(2.5) totalInSmallRangeFlags = [] for trial in range(self.numTrajectories): state = reset() while isTerminal(state): state = reset() jointActions = sampleFromDistribution(softPolicy(wolvesCentralControlPolicies[numWolves - 2](state))) hierarchyActions = [] weIds = [list(range(numSheep, numWolves + numSheep)) for _ in range(numWolves)] for index in range(numWolves): weId = weIds[index].copy() weId.insert(0, weId.pop(index)) relativeId = [0] + weId action = sampleFromDistribution(softPolicy(wolfLevel2Policies[numWolves - 2](state[relativeId]))) hierarchyActions.append(action) reasonableActionRange = [int(np.linalg.norm(np.array(jointAction) - np.array(hierarchyAction)) <= 8 * predatorPowerRatio) for jointAction, hierarchyAction in zip(jointActions, hierarchyActions) if jointAction != (0, 0) and hierarchyAction != (0, 0)] totalInSmallRangeFlags = totalInSmallRangeFlags + reasonableActionRange inSmallRangeRateMean = np.mean(totalInSmallRangeFlags) return inSmallRangeRateMean
def main(): DEBUG = 0 renderOn = 0 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 5 endSampleIndex = 7 agentId = 1 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', 'NoPhysics2wolves1sheep', 'trainWolvesTwoCenterControlAction88', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 killzoneRadius = 150 fixedParameters = { 'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius } generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): numOfAgent = 3 xBoundary = [0, 600] yBoundary = [0, 600] resetState = Reset(xBoundary, yBoundary, numOfAgent) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame( stayInBoundaryByReflectVelocity) chooseInterpolatedNextState = lambda interpolatedStates: interpolatedStates[ -1] sheepId = 0 wolvesId = 1 centerControlIndexList = [wolvesId] unpackCenterControlAction = UnpackCenterControlAction( centerControlIndexList) numFramesToInterpolate = 0 transit = TransitWithInterpolation(numFramesToInterpolate, interpolateOneFrame, chooseInterpolatedNextState, unpackCenterControlAction) # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] preyPowerRatio = 10 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 8 wolfActionOneSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list( product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 2 * numOfAgent numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' sheepNNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', 'NoPhysics2wolves1sheep', 'trainSheepWithTwoHeatSeekingWolves', 'trainedResNNModels') sheepNNModelFixedParameters = { 'agentId': 0, 'maxRunningSteps': 50, 'numSimulations': 110, 'miniBatchSize': 256, 'learningRate': 0.0001, } getSheepNNModelSavePath = GetSavePath(sheepNNModelSaveDirectory, NNModelSaveExtension, sheepNNModelFixedParameters) depth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getSheepNNModelSavePath({ 'trainSteps': 50000, 'depth': depth }) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) speed = 120 #sheepPolicy = HeatSeekingContinuesDeterministicPolicy(getWolfOneXPos, getSheepXPos, speed) # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: { action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace } # load chase nn policy chooseActionInMCTS = sampleFromDistribution def wolvesTransit(state, action): return transit(state, [chooseActionInMCTS(sheepPolicy(state)), action]) # reward function wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) isCollidedOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isCollidedTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) calCollisionTimes = lambda state: np.sum([ isCollidedOne(state), isCollidedTwo(state) ]) # collisionTimeByAddingCollisionInAllWolves #calCollisionTimes = lambda state: np.max([isCollidedOne(state), isCollidedTwo(state)]) # collisionTimeByBooleanCollisionForAnyWolf calTerminationSignals = calCollisionTimes chooseInterpolatedStateByEarlyTermination = ChooseInterpolatedStateByEarlyTermination( calTerminationSignals) numFramesToInterpolateInReward = 3 interpolateStateInReward = TransitWithInterpolation( numFramesToInterpolateInReward, interpolateOneFrame, chooseInterpolatedStateByEarlyTermination, unpackCenterControlAction) aliveBonus = -1 / maxRunningSteps * 10 deathPenalty = 1 rewardFunction = RewardFunctionCompeteWithStateInterpolation( aliveBonus, deathPenalty, calCollisionTimes, interpolateStateInReward) # initialize children; expand initializeChildren = InitializeChildren(wolvesActionSpace, wolvesTransit, getActionPrior) isTerminal = lambda state: False expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy(state): return [ sampleFromDistribution(sheepPolicy(state)), wolvesActionSpace[np.random.choice( range(numWolvesActionSpace))] ] # rollout #rolloutHeuristicWeight = 0 #minDistance = 400 #rolloutHeuristic1 = HeuristicDistanceToTarget( # rolloutHeuristicWeight, getWolfOneXPos, getSheepXPos, minDistance) #rolloutHeuristic2 = HeuristicDistanceToTarget( # rolloutHeuristicWeight, getWolfTwoXPos, getSheepXPos, minDistance) #rolloutHeuristic = lambda state: (rolloutHeuristic1(state) + rolloutHeuristic2(state)) / 2 rolloutHeuristic = lambda state: 0 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, transit, rewardFunction, isTerminal, rolloutHeuristic) wolfPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = [sheepPolicy(state), wolfPolicy(state)] action = [ chooseAction(actionDist) for actionDist, chooseAction in zip( actionDists, chooseActionList) ] return action render = None if renderOn: import pygame as pg from pygame.color import THECOLORS screenColor = THECOLORS['black'] circleColorList = [ THECOLORS['green'], THECOLORS['yellow'], THECOLORS['red'] ] circleSize = 10 saveImage = False saveImageDir = os.path.join(dirName, '..', '..', '..', '..', 'data', 'demoImg') if not os.path.exists(saveImageDir): os.makedirs(saveImageDir) screen = pg.display.set_mode([max(xBoundary), max(yBoundary)]) render = Render(numOfAgent, xPosIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageDir) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [ sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex) ] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)
def __call__(self, parameters): print(parameters) numWolves = parameters['numWolves'] numSheep = parameters['numSheep'] softParameterInInference = parameters['inferenceSoft'] softParameterInPlanning = parameters['wolfPolicySoft'] otherCompeteRate = parameters['otherCompeteRate'] competeDetectionRate = parameters['competeDetectionRate'] ## MDP Env # state is all multi agent state # action is all multi agent action xBoundary = [0, 600] yBoundary = [0, 600] numOfAgent = numWolves + numSheep reset = Reset(xBoundary, yBoundary, numOfAgent) possibleSheepIds = list(range(numSheep)) possibleWolvesIds = list(range(numSheep, numSheep + numWolves)) getSheepStatesFromAll = lambda state: np.array(state)[possibleSheepIds] getWolvesStatesFromAll = lambda state: np.array(state)[ possibleWolvesIds] killzoneRadius = 50 isTerminal = IsTerminal(killzoneRadius, getSheepStatesFromAll, getWolvesStatesFromAll) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame( stayInBoundaryByReflectVelocity) numFramesToInterpolate = 3 transit = TransitWithTerminalCheckOfInterpolation( numFramesToInterpolate, interpolateOneFrame, isTerminal) maxRunningSteps = 61 timeCost = 1 / maxRunningSteps terminalBonus = 1 rewardFunction = RewardFunctionByTerminal(timeCost, terminalBonus, isTerminal) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectory(maxRunningSteps, isTerminal, reset, forwardOneStep) ## MDP Policy # Sheep Part # Sheep Policy Function numSheepPolicyStateSpace = 2 * (numWolves + 1) sheepActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 12 sheepIndividualActionSpace = list( map(tuple, np.array(sheepActionSpace) * preyPowerRatio)) numSheepActionSpace = len(sheepIndividualActionSpace) regularizationFactor = 1e-4 generateSheepModel = GenerateModel(numSheepPolicyStateSpace, numSheepActionSpace, regularizationFactor) sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] sheepNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepModel = generateSheepModel(sharedWidths * sheepNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepModelPath = os.path.join( '..', '..', 'data', 'preTrainModel', 'agentId=0.' + str(numWolves) + '_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=110_trainSteps=50000' ) sheepNNModel = restoreVariables(initSheepModel, sheepModelPath) sheepPolicy = ApproximatePolicy(sheepNNModel, sheepIndividualActionSpace) # Sheep Generate Action softParameterInPlanningForSheep = 2.0 softPolicyInPlanningForSheep = SoftDistribution( softParameterInPlanningForSheep) softenSheepPolicy = lambda relativeAgentsStatesForSheepPolicy: softPolicyInPlanningForSheep( sheepPolicy(relativeAgentsStatesForSheepPolicy)) sheepChooseActionMethod = sampleFromDistribution sheepSampleActions = [ SampleActionOnFixedIntention(selfId, possibleWolvesIds, softenSheepPolicy, sheepChooseActionMethod) for selfId in possibleSheepIds ] # Wolves Part # Percept Action For Inference perceptAction = lambda action: action # Policy Likelihood function: Wolf Centrol Control NN Policy Given Intention numWolvesStateSpaces = [ 2 * (numInWe + 1) for numInWe in range(2, numWolves + 1) ] actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] predatorPowerRatio = 8 wolfIndividualActionSpace = list( map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesCentralControlActionSpaces = [ list(it.product(wolfIndividualActionSpace, repeat=numInWe)) for numInWe in range(2, numWolves + 1) ] numWolvesCentralControlActionSpaces = [ len(wolvesCentralControlActionSpace) for wolvesCentralControlActionSpace in wolvesCentralControlActionSpaces ] regularizationFactor = 1e-4 generateWolvesCentralControlModels = [ GenerateModel(numStateSpace, numActionSpace, regularizationFactor) for numStateSpace, numActionSpace in zip( numWolvesStateSpaces, numWolvesCentralControlActionSpaces) ] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolvesCentralControlModels = [ generateWolvesCentralControlModel(sharedWidths * wolfNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generateWolvesCentralControlModel in generateWolvesCentralControlModels ] NNNumSimulations = 250 wolvesModelPaths = [ os.path.join( '..', '..', 'data', 'preTrainModel', 'agentId=' + str(8 * np.sum([10**_ for _ in range(numInWe)])) + '_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=' + str(NNNumSimulations) + '_trainSteps=50000') for numInWe in range(2, numWolves + 1) ] print(wolvesModelPaths) wolvesCentralControlNNModels = [ restoreVariables(initWolvesCentralControlModel, wolvesModelPath) for initWolvesCentralControlModel, wolvesModelPath in zip( initWolvesCentralControlModels, wolvesModelPaths) ] wolvesCentralControlPolicies = [ ApproximatePolicy(NNModel, actionSpace) for NNModel, actionSpace in zip(wolvesCentralControlNNModels, wolvesCentralControlActionSpaces) ] centralControlPolicyListBasedOnNumAgentsInWe = wolvesCentralControlPolicies # 0 for two agents in We, 1 for three agents... softPolicyInInference = SoftDistribution(softParameterInInference) policyForCommittedAgentsInInference = PolicyForCommittedAgent( centralControlPolicyListBasedOnNumAgentsInWe, softPolicyInInference, getStateOrActionThirdPersonPerspective) concernedAgentsIds = [2] calCommittedAgentsPolicyLikelihood = CalCommittedAgentsPolicyLikelihood( concernedAgentsIds, policyForCommittedAgentsInInference) getGoalStateForIndividualHeatseeking = lambda statesRelative: np.array( statesRelative)[0] getSelfStateForIndividualHeatseeking = lambda statesRelative: np.array( statesRelative)[1] heatseekingPrecesion = 1.83 heatSeekingDiscreteStochasticPolicy = HeatSeekingDiscreteStochasticPolicy( heatseekingPrecesion, wolfIndividualActionSpace, getSelfStateForIndividualHeatseeking, getGoalStateForIndividualHeatseeking) policyForUncommittedAgentsInInference = PolicyForUncommittedAgent( possibleWolvesIds, heatSeekingDiscreteStochasticPolicy, softPolicyInInference, getStateOrActionFirstPersonPerspective) calUncommittedAgentsPolicyLikelihood = CalUncommittedAgentsPolicyLikelihood( possibleWolvesIds, concernedAgentsIds, policyForUncommittedAgentsInInference) # Joint Likelihood calJointLikelihood = lambda intention, state, perceivedAction: calCommittedAgentsPolicyLikelihood(intention, state, perceivedAction) * \ calUncommittedAgentsPolicyLikelihood(intention, state, perceivedAction) wolvesValueListBasedOnNumAgentsInWe = [ ApproximateValue(NNModel) for NNModel in wolvesCentralControlNNModels ] calIntentionValueGivenState = CalIntentionValueGivenState( wolvesValueListBasedOnNumAgentsInWe) softParamterForValue = 0.01 softValueToBuildDistribution = SoftMax(softParamterForValue) adjustIntentionPriorGivenValueOfState = AdjustIntentionPriorGivenValueOfState( calIntentionValueGivenState, softValueToBuildDistribution) # Sample and Save Trajectory trajectoriesWithIntentionDists = [] for trajectoryId in range(self.numTrajectories): # Intention Prior For inference otherWolfPossibleIntentionSpaces = {0: [(0, (1, 2))], 1: [(0, ())]} otherIntentionType = np.random.choice( [1, 0], p=[otherCompeteRate, 1 - otherCompeteRate]) otherWolfIntentionSpace = otherWolfPossibleIntentionSpaces[ otherIntentionType] selfPossibleIntentionSpaces = { 0: [(0, (1, 2))], 0.5: [(0, (1, 2)), (0, ())], 1: [(0, ())] } selfWolfIntentionSpace = selfPossibleIntentionSpaces[ competeDetectionRate] intentionSpacesForAllWolves = [ selfWolfIntentionSpace, otherWolfIntentionSpace ] wolvesIntentionPriors = [{ tuple(intention): 1 / len(allPossibleIntentionsOneWolf) for intention in allPossibleIntentionsOneWolf } for allPossibleIntentionsOneWolf in intentionSpacesForAllWolves] # Infer and update Intention variablesForAllWolves = [[ intentionSpace ] for intentionSpace in intentionSpacesForAllWolves] jointHypothesisSpaces = [ pd.MultiIndex.from_product(variables, names=['intention']) for variables in variablesForAllWolves ] concernedHypothesisVariable = ['intention'] priorDecayRate = 1 softPrior = SoftDistribution(priorDecayRate) inferIntentionOneStepList = [ InferOneStep(jointHypothesisSpace, concernedHypothesisVariable, calJointLikelihood, softPrior) for jointHypothesisSpace in jointHypothesisSpaces ] chooseIntention = sampleFromDistribution valuePriorEndTime = -100 updateIntentions = [ UpdateIntention(intentionPrior, valuePriorEndTime, adjustIntentionPriorGivenValueOfState, perceptAction, inferIntentionOneStep, chooseIntention) for intentionPrior, inferIntentionOneStep in zip( wolvesIntentionPriors, inferIntentionOneStepList) ] # reset intention and adjuste intention prior attributes tools for multiple trajectory intentionResetAttributes = [ 'timeStep', 'lastState', 'lastAction', 'intentionPrior', 'formerIntentionPriors' ] intentionResetAttributeValues = [ dict( zip(intentionResetAttributes, [0, None, None, intentionPrior, [intentionPrior]])) for intentionPrior in wolvesIntentionPriors ] resetIntentions = ResetObjects(intentionResetAttributeValues, updateIntentions) returnAttributes = ['formerIntentionPriors'] getIntentionDistributions = GetObjectsValuesOfAttributes( returnAttributes, updateIntentions) attributesToRecord = ['lastAction'] recordActionForUpdateIntention = RecordValuesForObjects( attributesToRecord, updateIntentions) # Wovels Generate Action softPolicyInPlanning = SoftDistribution(softParameterInPlanning) policyForCommittedAgentInPlanning = PolicyForCommittedAgent( centralControlPolicyListBasedOnNumAgentsInWe, softPolicyInPlanning, getStateOrActionThirdPersonPerspective) policyForUncommittedAgentInPlanning = PolicyForUncommittedAgent( possibleWolvesIds, heatSeekingDiscreteStochasticPolicy, softPolicyInPlanning, getStateOrActionFirstPersonPerspective) wolfChooseActionMethod = sampleFromDistribution getSelfActionThirdPersonPerspective = lambda weIds, selfId: list( weIds).index(selfId) chooseCommittedAction = GetActionFromJointActionDistribution( wolfChooseActionMethod, getSelfActionThirdPersonPerspective) chooseUncommittedAction = sampleFromDistribution wolvesSampleIndividualActionGivenIntentionList = [ SampleIndividualActionGivenIntention( selfId, policyForCommittedAgentInPlanning, policyForUncommittedAgentInPlanning, chooseCommittedAction, chooseUncommittedAction) for selfId in possibleWolvesIds ] wolvesSampleActions = [ SampleActionOnChangableIntention( updateIntention, wolvesSampleIndividualActionGivenIntention) for updateIntention, wolvesSampleIndividualActionGivenIntention in zip(updateIntentions, wolvesSampleIndividualActionGivenIntentionList) ] allIndividualSampleActions = sheepSampleActions + wolvesSampleActions sampleActionMultiAgent = SampleActionMultiagent( allIndividualSampleActions, recordActionForUpdateIntention) trajectory = sampleTrajectory(sampleActionMultiAgent) intentionDistributions = getIntentionDistributions() trajectoryWithIntentionDists = [ tuple(list(SASRPair) + list(intentionDist)) for SASRPair, intentionDist in zip(trajectory, intentionDistributions) ] trajectoriesWithIntentionDists.append( tuple(trajectoryWithIntentionDists)) resetIntentions() #print(intentionDistributions[-1], otherCompeteRate) trajectoryFixedParameters = { 'sheepPolicySoft': softParameterInPlanningForSheep, 'wolfPolicySoft': softParameterInPlanning, 'maxRunningSteps': maxRunningSteps, 'competePolicy': 'heatseeking', 'NNNumSimulations': NNNumSimulations, 'heatseekingPrecesion': heatseekingPrecesion } self.saveTrajectoryByParameters(trajectoriesWithIntentionDists, trajectoryFixedParameters, parameters) print(np.mean([len(tra) for tra in trajectoriesWithIntentionDists]))
def main(): parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) # parametersForTrajectoryPath['sampleOneStepPerTraj']=1 #0 # parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) trainSteps = int(parametersForTrajectoryPath['trainSteps']) depth = int(parametersForTrajectoryPath['depth']) dataSize = int(parametersForTrajectoryPath['dataSize']) # parametersForTrajectoryPath = {} # depth = 5 # dataSize = 5000 # trainSteps = 50000 # startSampleIndex = 0 # endSampleIndex = 100 killzoneRadius = 25 numSimulations = 200 maxRunningSteps = 100 fixedParameters = { 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius } trajectorySaveExtension = '.pickle' dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', 'data', 'evaluateSupervisedLearning', 'multiMCTSAgentResNetNoPhysicsCenterControl', 'evaluateCenterControlTrajByCondition') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): numOfAgent = 3 sheepId = 0 wolvesId = 1 wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] xBoundary = [0, 600] yBoundary = [0, 600] reset = Reset(xBoundary, yBoundary, numOfAgent) getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) isTerminalOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isTerminalTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) isTerminal = lambda state: isTerminalOne(state) or isTerminalTwo(state) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) transit = TransiteForNoPhysics(stayInBoundaryByReflectVelocity) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 3 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 2 wolfActionOneSpace = list( map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesActionSpace = list( it.product(wolfActionOneSpace, wolfActionTwoSpace)) # neural network init numStateSpace = 6 numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' NNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', 'data', 'evaluateEscapeMultiChasingNoPhysics', 'trainedResNNModelsMultiStillAction') NNModelFixedParameters = { 'agentId': 0, 'maxRunningSteps': 150, 'numSimulations': 200, 'miniBatchSize': 256, 'learningRate': 0.0001 } getNNModelSavePath = GetSavePath(NNModelSaveDirectory, NNModelSaveExtension, NNModelFixedParameters) if not os.path.exists(NNModelSaveDirectory): os.makedirs(NNModelSaveDirectory) resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * 5, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getNNModelSavePath({ 'trainSteps': 50000, 'depth': 5 }) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) generateWolvesModel = GenerateModel(numStateSpace, numWolvesActionSpace, regularizationFactor) initWolvesNNModel = generateWolvesModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) NNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', 'data', 'evaluateSupervisedLearning', 'multiMCTSAgentResNetNoPhysicsCenterControl', 'trainedResNNModels') wolfId = 1 NNModelFixedParametersWolves = { 'agentId': wolfId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'miniBatchSize': 256, 'learningRate': 0.0001, } getNNModelSavePath = GetSavePath(NNModelSaveDirectory, NNModelSaveExtension, NNModelFixedParametersWolves) wolvesTrainedModelPath = getNNModelSavePath({ 'trainSteps': trainSteps, 'depth': depth, 'dataSize': dataSize }) wolvesTrainedModel = restoreVariables(initWolvesNNModel, wolvesTrainedModelPath) wolfPolicy = ApproximatePolicy(wolvesTrainedModel, wolvesActionSpace) from exec.evaluateNoPhysicsEnvWithRender import Render import pygame as pg from pygame.color import THECOLORS screenColor = THECOLORS['black'] circleColorList = [ THECOLORS['green'], THECOLORS['red'], THECOLORS['orange'] ] circleSize = 10 saveImage = False saveImageDir = os.path.join(dirName, '..', '..', '..', 'data', 'demoImg') if not os.path.exists(saveImageDir): os.makedirs(saveImageDir) renderOn = False render = None if renderOn: screen = pg.display.set_mode([xBoundary[1], yBoundary[1]]) render = Render(numOfAgent, xPosIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageDir) chooseActionList = [chooseGreedyAction, chooseGreedyAction] sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, transit, isTerminal, reset, chooseActionList, render, renderOn) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] trajectories = [ sampleTrajectory(policy) for sampleIndex in range(startSampleIndex, endSampleIndex) ] saveToPickle(trajectories, trajectorySavePath)
def main(): DEBUG = 1 renderOn = 1 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 1 endSampleIndex = 2 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) iterationIndex = 2 numTrainStepEachIteration = 1 numTrajectoriesPerIteration = 1 else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) iterationIndex = int(parametersForTrajectoryPath['iterationIndex']) numTrainStepEachIteration = int(parametersForTrajectoryPath['numTrainStepEachIteration']) numTrajectoriesPerIteration = int(parametersForTrajectoryPath['numTrajectoriesPerIteration']) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join(dirName, '..', '..', 'data', 'iterTrain2wolves1sheepMADDPGEnv', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 killzoneRadius = 50 numTree = 2 fixedParameters = {'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius} generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): # env MDP sheepsID = [0] wolvesID = [1, 2] blocksID = [] numSheeps = len(sheepsID) numWolves = len(wolvesID) numBlocks = len(blocksID) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks sheepSize = 0.05 wolfSize = 0.075 blockSize = 0.2 sheepMaxSpeed = 1.3 * 1 wolfMaxSpeed = 1.0 * 1 blockMaxSpeed = None entitiesSizeList = [sheepSize] * numSheeps + [wolfSize] * numWolves + [blockSize] * numBlocks entityMaxSpeedList = [sheepMaxSpeed] * numSheeps + [wolfMaxSpeed] * numWolves + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities centralControlId = 1 centerControlIndexList = [centralControlId] reshapeAction = UnpackCenterControlAction(centerControlIndexList) getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList, getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList, entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) interpolateState = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) numFramesToInterpolate = 1 def transit(state, action): for frameIndex in range(numFramesToInterpolate): nextState = interpolateState(state, action) action = np.array([(0, 0)] * numAgents) state = nextState return nextState isTerminal = lambda state: False isCollision = IsCollision(getPosFromAgentState) collisonRewardWolf = 1 punishForOutOfBound = PunishForOutOfBound() rewardWolf = RewardCentralControlPunishBond(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardWolf) collisonRewardSheep = -1 rewardSheep = RewardCentralControlPunishBond(sheepsID, wolvesID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardSheep) terminalRewardList = [collisonRewardSheep,collisonRewardWolf] rewardMultiAgents = [rewardSheep, rewardWolf] resetState = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] # policy actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 0.5 sheepActionSpace = list(map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 0.5 wolfActionOneSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list(product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 4 * numEntities numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) generateWolvesModel = GenerateModel(numStateSpace, numWolvesActionSpace, regularizationFactor) generateModelList = [generateSheepModel, generateWolvesModel] sheepDepth = 9 wolfDepth = 9 depthList = [sheepDepth, wolfDepth] resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' sheepId,wolvesId = [0,1] trainableAgentIds = [sheepId, wolvesId] multiAgentNNmodel = [generateModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for depth, generateModel in zip(depthList, generateModelList)] otherAgentApproximatePolicy = [lambda NNmodel, : ApproximatePolicy(NNmodel, sheepActionSpace), lambda NNmodel, : ApproximatePolicy(NNmodel, wolvesActionSpace)] # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) getApproximatePolicy = [lambda NNmodel, : ApproximatePolicy(NNmodel, sheepActionSpace), lambda NNmodel, : ApproximatePolicy(NNmodel, wolvesActionSpace)] getApproximateValue = [lambda NNmodel: ApproximateValue(NNmodel), lambda NNmodel: ApproximateValue(NNmodel)] def getStateFromNode(node): return list(node.id.values())[0] chooseActionInMCTS = sampleFromDistribution composeMultiAgentTransitInSingleAgentMCTS = ComposeMultiAgentTransitInSingleAgentMCTS(chooseActionInMCTS) composeSingleAgentGuidedMCTS = ComposeSingleAgentGuidedMCTS(numTree, numSimulations, actionSpaceList, terminalRewardList, selectChild, isTerminal, transit, getStateFromNode, getApproximatePolicy, getApproximateValue, composeMultiAgentTransitInSingleAgentMCTS) prepareMultiAgentPolicy = PrepareMultiAgentPolicy(composeSingleAgentGuidedMCTS, otherAgentApproximatePolicy, trainableAgentIds) # load model NNModelSaveExtension = '' NNModelSaveDirectory = os.path.join(dirName, '..', '..', 'data', 'iterTrain2wolves1sheepMADDPGEnv', 'NNModelRes') if not os.path.exists(NNModelSaveDirectory): os.makedirs(NNModelSaveDirectory) generateNNModelSavePath = GetSavePath(NNModelSaveDirectory, NNModelSaveExtension, fixedParameters) for agentId in trainableAgentIds: modelPath = generateNNModelSavePath({'iterationIndex': iterationIndex - 1, 'agentId': agentId, 'numTrajectoriesPerIteration': numTrajectoriesPerIteration, 'numTrainStepEachIteration': numTrainStepEachIteration}) restoredNNModel = restoreVariables(multiAgentNNmodel[agentId], modelPath) multiAgentNNmodel[agentId] = restoredNNModel multiAgentPolicy = prepareMultiAgentPolicy(multiAgentNNmodel) chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = multiAgentPolicy(state) action = [chooseAction(actionDist) for actionDist, chooseAction in zip(actionDists, chooseActionList)] return action render = lambda state: None forwardOneStep = ForwardMultiAgentsOneStep(transit, rewardMultiAgents) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex)] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)
def __call__(self, parameters): print(parameters) numWolves = parameters['numWolves'] numSheep = parameters['numSheep'] softParamterForValue = parameters['valuePriorSoftMaxBeta'] valuePriorEndTime = parameters['valuePriorEndTime'] ## MDP Env # state is all multi agent state # action is all multi agent action xBoundary = [0,600] yBoundary = [0,600] numOfAgent = numWolves + numSheep reset = Reset(xBoundary, yBoundary, numOfAgent) possibleSheepIds = list(range(numSheep)) possibleWolvesIds = list(range(numSheep, numSheep + numWolves)) getSheepStatesFromAll = lambda state: np.array(state)[possibleSheepIds] getWolvesStatesFromAll = lambda state: np.array(state)[possibleWolvesIds] killzoneRadius = 25 isTerminal = IsTerminal(killzoneRadius, getSheepStatesFromAll, getWolvesStatesFromAll) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity(xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame(stayInBoundaryByReflectVelocity) numFramesToInterpolate = 5 transit = TransitWithTerminalCheckOfInterpolation(numFramesToInterpolate, interpolateOneFrame, isTerminal) maxRunningSteps = 52 timeCost = 1/maxRunningSteps terminalBonus = 1 rewardFunction = RewardFunctionByTerminal(timeCost, terminalBonus, isTerminal) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectory(maxRunningSteps, isTerminal, reset, forwardOneStep) ## MDP Policy # Sheep Part # Sheep Policy Function numSheepPolicyStateSpace = 2 * (numWolves + 1) sheepActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 12 sheepIndividualActionSpace = list(map(tuple, np.array(sheepActionSpace) * preyPowerRatio)) numSheepActionSpace = len(sheepIndividualActionSpace) regularizationFactor = 1e-4 generateSheepModel = GenerateModel(numSheepPolicyStateSpace, numSheepActionSpace, regularizationFactor) sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] sheepNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepModel = generateSheepModel(sharedWidths * sheepNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepModelPath = os.path.join('..', '..', 'data', 'preTrainModel', 'agentId=0.'+str(numWolves)+'_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=110_trainSteps=50000') sheepNNModel = restoreVariables(initSheepModel, sheepModelPath) sheepPolicy = ApproximatePolicy(sheepNNModel, sheepIndividualActionSpace) # Sheep Generate Action softParameterInPlanningForSheep = 2.5 softPolicyInPlanningForSheep = SoftDistribution(softParameterInPlanningForSheep) softenSheepPolicy = lambda relativeAgentsStatesForSheepPolicy: softPolicyInPlanningForSheep(sheepPolicy(relativeAgentsStatesForSheepPolicy)) sheepChooseActionMethod = sampleFromDistribution sheepSampleActions = [SampleActionOnFixedIntention(selfId, possibleWolvesIds, softenSheepPolicy, sheepChooseActionMethod) for selfId in possibleSheepIds] # Wolves Part # Policy Likelihood function: Wolf Centrol Control NN Policy Given Intention numWolvesStateSpaces = [2 * (numInWe + numSheep) for numInWe in range(2, numWolves + 1)] actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] predatorPowerRatio = 8 wolfIndividualActionSpace = list(map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesCentralControlActionSpaces = [list(it.product(wolfIndividualActionSpace, repeat = numInWe)) for numInWe in range(2, numWolves + 1)] numWolvesCentralControlActionSpaces = [len(wolvesCentralControlActionSpace) for wolvesCentralControlActionSpace in wolvesCentralControlActionSpaces] regularizationFactor = 1e-4 generateWolvesCentralControlModels = [GenerateModel(numStateSpace, numActionSpace, regularizationFactor) for numStateSpace, numActionSpace in zip(numWolvesStateSpaces, numWolvesCentralControlActionSpaces)] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolvesCentralControlModels = [generateWolvesCentralControlModel(sharedWidths * wolfNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generateWolvesCentralControlModel in generateWolvesCentralControlModels] NNNumSimulations = 250 wolvesModelPaths = [os.path.join('..', '..', 'data', 'preTrainModel', 'agentId=.'+str(len(actionSpace) * np.sum([10**_ for _ in range(numInWe)]))+'_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations='+str(NNNumSimulations)+'_trainSteps=50000') for numInWe in range(2, numWolves + 1)] print(wolvesModelPaths) wolvesCentralControlNNModels = [restoreVariables(initWolvesCentralControlModel, wolvesModelPath) for initWolvesCentralControlModel, wolvesModelPath in zip(initWolvesCentralControlModels, wolvesModelPaths)] wolvesCentralControlPolicies = [ApproximatePolicy(NNModel, actionSpace) for NNModel, actionSpace in zip(wolvesCentralControlNNModels, wolvesCentralControlActionSpaces)] # Wovels Generate Action softParameterInPlanning = 2.5 softPolicyInPlanning = SoftDistribution(softParameterInPlanning) wolvesPolicy = lambda state: wolvesCentralControlPolicies[numWolves - 2](state) wolfChooseActionMethod = sampleFromDistribution wolvesSampleAction = lambda state: wolfChooseActionMethod(softPolicyInPlanning(wolvesPolicy(state))) def sampleAction(state): action = list(wolvesSampleAction(state)) + [sheepSampleAction(state) for sheepSampleAction in sheepSampleActions] return action # Sample and Save Trajectory trajectories = [sampleTrajectory(sampleAction) for _ in range(self.numTrajectories)] wolfType = 'sharedReward' trajectoryFixedParameters = {'sheepPolicySoft': softParameterInPlanningForSheep, 'wolfPolicySoft': softParameterInPlanning, 'maxRunningSteps': maxRunningSteps, 'hierarchy': 0, 'NNNumSimulations':NNNumSimulations, 'wolfType': wolfType} self.saveTrajectoryByParameters(trajectories, trajectoryFixedParameters, parameters) print(np.mean([len(tra) for tra in trajectories]))
def main(): DEBUG = 0 renderOn = 0 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 0 endSampleIndex = 10 agentId = 1 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', '2wolves1sheep', 'trainWolvesTwoCenterControlMultiTrees', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 500 killzoneRadius = 50 fixedParameters = { 'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius } generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath( parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): numOfAgent = 3 sheepId = 0 wolvesId = 1 wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] xBoundary = [0, 600] yBoundary = [0, 600] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) reset = Reset(xBoundary, yBoundary, numOfAgent) isTerminalOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isTerminalTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) isTerminal = lambda state: isTerminalOne(state) or isTerminalTwo(state) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) centerControlIndexList = [wolvesId] unpackCenterControlAction = UnpackCenterControlAction( centerControlIndexList) transitionFunction = TransiteForNoPhysicsWithCenterControlAction( stayInBoundaryByReflectVelocity) numFramesToInterpolate = 3 transit = TransitWithInterpolateStateWithCenterControlAction( numFramesToInterpolate, transitionFunction, isTerminal, unpackCenterControlAction) # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = actionSpace # wolfActionSpace = [(10, 0), (0, 10), (-10, 0), (0, -10), (0, 0)] preyPowerRatio = 12 sheepActionSpace = list( map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 8 wolfActionOneSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list( map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list( product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 2 * numOfAgent numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' sheepNNModelSaveDirectory = os.path.join( dirName, '..', '..', '..', '..', 'data', '2wolves1sheep', 'trainSheepWithTwoHeatSeekingWolves', 'trainedResNNModels') sheepNNModelFixedParameters = { 'agentId': 0, 'maxRunningSteps': 50, 'numSimulations': 110, 'miniBatchSize': 256, 'learningRate': 0.0001, } getSheepNNModelSavePath = GetSavePath(sheepNNModelSaveDirectory, NNModelSaveExtension, sheepNNModelFixedParameters) depth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getSheepNNModelSavePath({ 'trainSteps': 50000, 'depth': depth }) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: { action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace } # load chase nn policy temperatureInMCTS = 1 chooseActionInMCTS = SampleAction(temperatureInMCTS) def wolvesTransit(state, action): return transit(state, [chooseActionInMCTS(sheepPolicy(state)), action]) # reward function aliveBonus = -1 / maxRunningSteps deathPenalty = 1 rewardFunction = reward.RewardFunctionCompete(aliveBonus, deathPenalty, isTerminal) # initialize children; expand initializeChildren = InitializeChildren(wolvesActionSpace, wolvesTransit, getActionPrior) expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy(state): return wolvesActionSpace[np.random.choice( range(numWolvesActionSpace))] # rollout rolloutHeuristicWeight = 0 minDistance = 400 rolloutHeuristic1 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfOneXPos, getSheepXPos, minDistance) rolloutHeuristic2 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfTwoXPos, getSheepXPos, minDistance) rolloutHeuristic = lambda state: (rolloutHeuristic1(state) + rolloutHeuristic2(state)) / 2 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, wolvesTransit, rewardFunction, isTerminal, rolloutHeuristic) numTree = 4 numSimulationsPerTree = int(numSimulations / numTree) wolfPolicy = StochasticMCTS( numTree, numSimulationsPerTree, selectChild, expand, rollout, backup, establishSoftmaxActionDistFromMultipleTrees) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [chooseGreedyAction, chooseGreedyAction] render = None if renderOn: import pygame as pg from pygame.color import THECOLORS screenColor = THECOLORS['black'] circleColorList = [ THECOLORS['green'], THECOLORS['red'], THECOLORS['red'] ] circleSize = 10 saveImage = False saveImageDir = os.path.join(dirName, '..', '..', '..', '..', 'data', 'demoImg') if not os.path.exists(saveImageDir): os.makedirs(saveImageDir) screen = pg.display.set_mode([xBoundary[1], yBoundary[1]]) render = Render(numOfAgent, xPosIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageDir) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, transit, isTerminal, reset, chooseActionList, render, renderOn) trajectories = [ sampleTrajectory(policy) for sampleIndex in range(startSampleIndex, endSampleIndex) ] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)
def main(): startTime = time.time() DEBUG = 0 renderOn = 0 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 5 endSampleIndex = 8 agentId = 0 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) agentId = int(parametersForTrajectoryPath['agentId']) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join(dirName, '..', '..', '..', '..', 'data', 'MADDPG2wolves1sheep', 'trainSheepWithPretrrainWolves', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 fixedParameters = {'agentId': agentId, 'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations} generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): # env MDP sheepsID = [0] wolvesID = [1, 2] blocksID = [] numSheeps = len(sheepsID) numWolves = len(wolvesID) numBlocks = len(blocksID) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks sheepSize = 0.05 wolfSize = 0.075 blockSize = 0.2 sheepMaxSpeed = 1.3 * 1 wolfMaxSpeed = 1.0 * 1 blockMaxSpeed = None entitiesSizeList = [sheepSize] * numSheeps + [wolfSize] * numWolves + [blockSize] * numBlocks entityMaxSpeedList = [sheepMaxSpeed] * numSheeps + [wolfMaxSpeed] * numWolves + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities centralControlId = 1 centerControlIndexList = [centralControlId] reshapeAction = UnpackCenterControlAction(centerControlIndexList) getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList, getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList, entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) interpolateState = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) numFramesToInterpolate = 1 def transit(state, action): for frameIndex in range(numFramesToInterpolate): nextState = interpolateState(state, action) action = np.array([(0, 0)] * numAgents) state = nextState return nextState isTerminal = lambda state: False isCollision = IsCollision(getPosFromAgentState) collisonRewardWolf = 1 punishForOutOfBound = PunishForOutOfBound() rewardWolf = RewardCentralControlPunishBond(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardWolf) collisonRewardSheep = -1 rewardSheep = RewardCentralControlPunishBond(sheepsID, wolvesID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardSheep) resetState = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] # policy actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 0.5 sheepActionSpace = list(map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 0.5 wolfActionOneSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list(product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 4 * numEntities numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateWolvesModel = GenerateModel(numStateSpace, numWolvesActionSpace, regularizationFactor) # wolf NN Policy NNModelSaveExtension = '' wolfTrainedModelPath = os.path.join(dirName, '..', '..', '..', '..', 'data', 'MADDPG2wolves1sheep', 'trainWolvesTwoCenterControlAction', 'trainedResNNModels', 'agentId=1_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=250_trainSteps=50000') depth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolfNNModel = generateWolvesModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) wolfTrainedModel = restoreVariables(initWolfNNModel, wolfTrainedModelPath) wolfPolicy = ApproximatePolicy(wolfTrainedModel, wolvesActionSpace) # MCTS cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: {action: 1 / len(sheepActionSpace) for action in sheepActionSpace} # load chase nn policy chooseActionInMCTS = sampleFromDistribution def sheepTransit(state, action): return transit( state, [action, chooseActionInMCTS(wolfPolicy(state))]) # initialize children; expand initializeChildren = InitializeChildren( sheepActionSpace, sheepTransit, getActionPrior) isTerminal = lambda state: False expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy( state): return [sheepActionSpace[np.random.choice(range(numSheepActionSpace))],sampleFromDistribution(wolfPolicy(state))] rolloutHeuristic = lambda state: 0 maxRolloutSteps = 15 rollout = RollOut(rolloutPolicy, maxRolloutSteps, transit, rewardSheep, isTerminal, rolloutHeuristic) sheepPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = [sheepPolicy(state), wolfPolicy(state)] action = [chooseAction(actionDist) for actionDist, chooseAction in zip(actionDists, chooseActionList)] return action render = lambda state: None forwardOneStep = ForwardOneStep(transit, rewardSheep) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex)] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath) endTime = time.time()