示例#1
0
def run_tsne_plot(embedding_path, dense):
    config = [1, 0]
    prefix = '_2_class_teacher_student'
    model_name = config_select(config) + prefix
    dense_str = "dense_32__dense" if dense else ""
    embedding_profess = np.load(
        os.path.join(
            embedding_path, model_name + '_embedding_overall_quality' +
            dense_str + '_all0.npy'))
    labels = np.load(
        os.path.join(
            embedding_path,
            model_name + '_embeddings_labels' + dense_str + '_all.npy'))
    plot_tsne_profess_all(embedding_profess, labels, dense=dense)
示例#2
0
    # train_index, val_index, _, _ = train_test_split(index_feature, labels_integer, test_size=0.1, stratify=labels_integer)
    #
    # pickle.dump(le ,open(filename_label_encoder, 'wb'), protocol=2)
    # pickle.dump([train_index, val_index], open(filename_data_splits, 'wb'), protocol=2)

    train_index, val_index = pickle.load(open(filename_data_splits, 'rb'))
    #
    # for train_index, val_index in folds5_split_indices:
    if attention or dense or conv or dropout:
        configs = [[2, 0]]  # attention
    else:
        configs = [[1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]]

    for config in configs:

        model_name = config_select(config=config)

        for ii in range(5):
            file_path_model = os.path.join(path_model, model_name + '_27_class' + '_' + attention_dense_str + str(ii) + '.h5')
            file_path_log = os.path.join(path_model, 'log', model_name + '_27_class' + '_' + attention_dense_str + str(ii) + '.csv')

            list_feature_fold_train = [scaler.transform(list_feature_flatten[ii]) for ii in train_index]
            labels_integer_fold_train = labels_integer[train_index]
            labels_fold_train = to_categorical(labels_integer_fold_train)

            list_feature_fold_val = [scaler.transform(list_feature_flatten[ii]) for ii in val_index]
            labels_integer_fold_val = labels_integer[val_index]
            labels_fold_val = to_categorical(labels_integer_fold_val)

            train_embedding_RNN_batch(list_feature_fold_train=list_feature_fold_train,
                                      labels_fold_train=labels_fold_train,
示例#3
0
def embedding_classifier_ap(filename_feature, filename_list_key,
                            filename_scaler):
    """calculate average precision of classifier embedding"""

    list_feature_flatten_test, label_integer_test, le, scaler = \
        load_data_embedding(filename_feature=filename_feature,
                            filename_list_key=filename_list_key,
                            filename_scaler=filename_scaler)

    path_model = '/Users/gong/Documents/pycharmProjects/phoneticSimilarity/models/phone_embedding_classifier'
    path_eval = '/Users/gong/Documents/pycharmProjects/phoneticSimilarity/eval/phone_embedding_classifier'

    # configs = [[1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]]
    configs = [[1, 1]]

    for config in configs:
        model_name = config_select(config)

        list_ap = []
        embedding_dim = 29

        for ii in range(5):
            filename_model = os.path.join(path_model,
                                          model_name + '_' + str(ii) + '.h5')
            model = load_model(filepath=filename_model)
            weights = model.get_weights()

            input_shape = [1, None, 80]
            model_1_batch = model_select(config=config,
                                         input_shape=input_shape)
            model_1_batch.compile(optimizer='adam',
                                  loss='categorical_crossentropy',
                                  metrics=['accuracy'])
            model_1_batch.set_weights(weights=weights)

            embeddings = np.zeros(
                (len(list_feature_flatten_test), embedding_dim))
            for ii_emb in range(len(list_feature_flatten_test)):
                print('calculate', ii, 'run time', ii_emb, 'embedding',
                      len(list_feature_flatten_test), 'total')

                x_batch = np.expand_dims(scaler.transform(
                    list_feature_flatten_test[ii_emb]),
                                         axis=0)
                embeddings[ii_emb, :] = model_1_batch.predict_on_batch(x_batch)

            # dist_mat = distance_matrix_embedding_classifier(embeddings)

            dist_mat = (2.0 - squareform(pdist(embeddings, 'cosine'))) / 2.0
            gt_mat = ground_truth_matrix(label_integer_test)

            np.save(file=os.path.join(path_eval, 'dist_mat_' + str(ii)),
                    arr=dist_mat)

            ap = eval_embeddings(dist_mat=dist_mat, gt_mat=gt_mat)

            list_ap.append(ap)

        filename_eval = os.path.join(path_eval, model_name + '.csv')
        with open(filename_eval, 'w') as csvfile:
            csvwriter = csv.writer(
                csvfile,
                delimiter=',',
            )
            csvwriter.writerow([np.mean(list_ap), np.std(list_ap)])
def embedding_classifier_ap(filename_feature_teacher,
                            filename_list_key_teacher,
                            filename_feature_student,
                            filename_list_key_student,
                            filename_scaler,
                            embedding_dim,
                            config,
                            val_test,
                            MTL=False,
                            attention=False,
                            dense=False,
                            conv=False,
                            dropout=0.25):
    """calculate teacher student pairs average precision of classifier embedding"""

    list_feature_flatten_val, label_integer_val, le, scaler = \
        load_data_embedding_teacher_student(filename_feature_teacher=filename_feature_teacher,
                                            filename_list_key_teacher=filename_list_key_teacher,
                                            filename_feature_student=filename_feature_student,
                                            filename_list_key_student=filename_list_key_student,
                                            filename_scaler=filename_scaler)

    path_model = '/home/gong/Documents/pycharmProjects/phoneticSimilarity/models/phone_embedding_classifier'
    path_eval = '/home/gong/Documents/pycharmProjects/phoneticSimilarity/eval/phone_embedding_classifier'

    # configs = [[1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]]
    # configs = [[2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]]

    prefix = '_MTL' if MTL else '_2_class_teacher_student'
    model_name = config_select(
        config
    ) + prefix if embedding_dim == 2 or embedding_dim == 32 else config_select(
        config)
    if dense and conv:
        attention_dense_str = 'dense_conv_'
    elif attention:
        attention_dense_str = "attention_"
    elif dense:
        attention_dense_str = "dense_"
    elif conv:
        attention_dense_str = "conv_"
    elif dropout:
        attention_dense_str = "dropout_"
    else:
        attention_dense_str = ""

    list_ap = []
    # average precision of each phone
    array_ap_phn_5_runs = np.zeros((5, 27))
    for ii in range(5):
        print('run time', ii)
        filename_model = os.path.join(
            path_model,
            model_name + '_' + attention_dense_str + str(ii) + '.h5')
        if attention:
            model = load_model(
                filepath=filename_model,
                custom_objects={'Attention': Attention(return_attention=True)})
        else:
            model = load_model(filepath=filename_model)
        weights = model.get_weights()

        input_shape = [1, None, 80]
        if attention:
            x, input, _ = model_select_attention(config=config,
                                                 input_shape=input_shape,
                                                 conv=conv,
                                                 dropout=dropout)
        else:
            x, input = model_select(config=config,
                                    input_shape=input_shape,
                                    conv=conv,
                                    dropout=dropout)

        if MTL:
            if dense:
                pronun_out = x
                profess_out = Dense(32)(x)
            else:
                pronun_out = Dense(27,
                                   activation='softmax',
                                   name='pronunciation')(x)
                profess_out = Dense(embedding_dim,
                                    activation='softmax',
                                    name='professionality')(x)

            model_1_batch = Model(inputs=input,
                                  outputs=[pronun_out, profess_out])
            model_1_batch.compile(optimizer='adam',
                                  loss='categorical_crossentropy',
                                  loss_weights=[0.5, 0.5])
        else:
            if dense:
                outputs = Dense(embedding_dim)(x)
            else:
                outputs = Dense(embedding_dim, activation='softmax')(x)
            model_1_batch = Model(inputs=input, outputs=outputs)

            model_1_batch.compile(optimizer='adam',
                                  loss='categorical_crossentropy',
                                  metrics=['accuracy'])
        model_1_batch.set_weights(weights=weights)

        embeddings = np.zeros((len(list_feature_flatten_val), embedding_dim))
        for ii_emb in range(len(list_feature_flatten_val)):
            # print('calculate', ii, 'run time', ii_emb, 'embedding', len(list_feature_flatten_val), 'total')

            x_batch = np.expand_dims(scaler.transform(
                list_feature_flatten_val[ii_emb]),
                                     axis=0)
            if MTL:
                _, out = model_1_batch.predict_on_batch(x_batch)
            else:
                out = model_1_batch.predict_on_batch(x_batch)

            if attention:
                embeddings[ii_emb, :] = out[0, :]
            else:
                embeddings[ii_emb, :] = out

        # dist_mat = distance_matrix_embedding_classifier(embeddings)

        list_dist = []
        list_gt = []
        array_ap_phn = np.zeros((27, ))
        cols = []
        list_ratio_tea_stu = []
        for ii_class in range(27):
            # teacher student pair class index
            idx_ii_class = np.where(
                np.logical_or(label_integer_val == 2 * ii_class,
                              label_integer_val == 2 * ii_class + 1))[0]

            idx_ii_class_stu = len(
                np.where(label_integer_val == 2 * ii_class)[0])
            idx_ii_class_tea = len(
                np.where(label_integer_val == 2 * ii_class + 1)[0])

            # ratio of teacher's samples
            list_ratio_tea_stu.append(
                idx_ii_class_tea / float(idx_ii_class_tea + idx_ii_class_stu))

            dist_mat = (2.0 - squareform(
                pdist(embeddings[idx_ii_class], 'cosine'))) / 2.0
            labels_ii_class = [label_integer_val[idx] for idx in idx_ii_class]
            gt_mat = ground_truth_matrix(labels_ii_class)

            sample_num = dist_mat.shape[0]
            iu1 = np.triu_indices(sample_num, 1)  # trim the upper mat

            list_dist.append(dist_mat[iu1])
            list_gt.append(gt_mat[iu1])

            # calculate the average precision of each phoneme
            ap_phn = average_precision_score(y_true=np.abs(list_gt[ii_class]),
                                             y_score=np.abs(
                                                 list_dist[ii_class]),
                                             average='weighted')

            cols.append(le.inverse_transform(2 * ii_class).split('_')[0])
            array_ap_phn[ii_class] = ap_phn

            print(list_ratio_tea_stu)

        array_dist = np.concatenate(list_dist)
        array_gt = np.concatenate(list_gt)

        ap = average_precision_score(y_true=np.abs(array_gt),
                                     y_score=np.abs(array_dist),
                                     average='weighted')

        list_ap.append(ap)

        array_ap_phn_5_runs[ii, :] = array_ap_phn

    post_fix = prefix + '_2_class' if val_test == 'val' else prefix + '_2_class_extra_student'

    filename_eval = os.path.join(
        path_eval, model_name + post_fix + attention_dense_str + '.csv')

    with open(filename_eval, 'w') as csvfile:
        csvwriter = csv.writer(
            csvfile,
            delimiter=',',
        )
        csvwriter.writerow([np.mean(list_ap), np.std(list_ap)])

    # organize the Dataframe
    ap_phn_mean = np.mean(array_ap_phn_5_runs, axis=0)
    ap_phn_std = np.std(array_ap_phn_5_runs, axis=0)
    ap_phn_mean_std = pd.DataFrame(np.transpose(
        np.vstack((ap_phn_mean, ap_phn_std, list_ratio_tea_stu))),
                                   columns=['mean', 'std', 'ratio'],
                                   index=cols)

    ap_phn_mean_std = ap_phn_mean_std.sort_values(by='mean')
    ap_phn_mean_std.to_csv(
        os.path.join(
            path_eval,
            model_name + post_fix + attention_dense_str + '_phn_mean_std.csv'))
def embedding_classifier_helper(configs,
                                MTL,
                                path_eval,
                                path_model,
                                le,
                                list_feature_flatten,
                                scaler,
                                label,
                                dense=False,
                                emb_all=False):

    embedding_dim = 32 if dense else 2
    for config in configs:
        input_shape = [1, None, 80]

        prefix = '_MTL' if MTL else '_2_class_teacher_student'
        model_name = config_select(config) + prefix if embedding_dim == 2 or embedding_dim == 32 else config_select(config)

        dense_str = "dense_32_" if dense else ""

        if emb_all and dense:
            emb_all_str = "_dense_all"
        elif emb_all:
            emb_all_str = "_all"
        else:
            emb_all_str = ""

        if le:
            # label encoder
            pickle.dump(le, open(os.path.join(path_eval, model_name + '_le.pkl'), 'wb'), protocol=2)

        for ii in range(1):
            filename_model = os.path.join(path_model, model_name + '_' + dense_str + str(ii) + '.h5')
            model = load_model(filepath=filename_model)
            weights = model.get_weights()

            x, input = model_select(config=config, input_shape=input_shape, conv=False, dropout=False)

            if MTL:
                pronun_out = Dense(27, activation='softmax', name='pronunciation')(x)
                profess_out = Dense(embedding_dim, activation='softmax', name='professionality')(x)
                model_1_batch = Model(inputs=input, outputs=[pronun_out, profess_out])
                model_1_batch.compile(optimizer='adam',
                                      loss='categorical_crossentropy',
                                      loss_weights=[0.5, 0.5])
            else:
                if dense:
                    outputs = Dense(embedding_dim)(x)
                else:
                    outputs = Dense(embedding_dim, activation='softmax')(x)
                model_1_batch = Model(inputs=input, outputs=outputs)

                model_1_batch.compile(optimizer='adam',
                                      loss='categorical_crossentropy',
                                      metrics=['accuracy'])
            model_1_batch.set_weights(weights=weights)

            embeddings_profess = np.zeros((len(list_feature_flatten), embedding_dim))

            if MTL:
                embeddings_pronun = np.zeros((len(list_feature_flatten), 27))

            for ii_emb in range(len(list_feature_flatten)):
                print('calculate', ii, 'run time', ii_emb, 'embedding', len(list_feature_flatten), 'total')

                x_batch = np.expand_dims(scaler.transform(list_feature_flatten[ii_emb]), axis=0)
                if MTL:
                    embeddings_pronun[ii_emb, :], embeddings_profess[ii_emb, :] = \
                        model_1_batch.predict_on_batch(x_batch)
                else:
                    embeddings_profess[ii_emb, :] = model_1_batch.predict_on_batch(x_batch)

            np.save(file=os.path.join(path_eval, model_name + '_embedding_professionality' + dense_str + emb_all_str + str(ii)),
                    arr=embeddings_profess)
            np.save(file=os.path.join(path_eval, model_name + '_embeddings_labels' + dense_str + emb_all_str), arr=label)

            if MTL:
                np.save(file=os.path.join(path_eval, model_name + '_embedding_pronunciation' + dense_str + emb_all_str + str(ii)),
                        arr=embeddings_pronun)
示例#6
0
def embedding_classifier_helper(configs,
                                path_eval,
                                path_model,
                                le,
                                list_feature_flatten,
                                scaler,
                                label,
                                dense=False,
                                emb_all=False):
    """
    Output the classification model embedding for overall quality
    :param configs: model architecture
    :param path_eval: embedding output path
    :param path_model: embedding model path
    :param le: label encoder
    :param list_feature_flatten: log-mel feature list
    :param scaler: feature scaler
    :param label:
    :param dense: bool, use 32 embedding or not
    :param emb_all: bool, use all the dataset, including professional, amateur train, validation and extra test
    :return:
    """

    embedding_dim = 32 if dense else 2

    for config in configs:
        input_shape = [1, None, 80]
        prefix = '_2_class_teacher_student'
        dense_str = "dense_32_" if dense else ""
        model_name = config_select(config) + prefix

        if emb_all and dense:
            emb_all_str = "_dense_all"
        elif emb_all:
            emb_all_str = "_all"
        else:
            emb_all_str = ""

        if le:
            # label encoder
            pickle.dump(le, open(os.path.join(path_eval, model_name + '_le.pkl'), 'wb'), protocol=2)

        ii = 0  # only use the first model

        filename_model = os.path.join(path_model, model_name + '_' + dense_str + str(ii) + '.h5')

        model = load_model(filepath=filename_model)

        weights = model.get_weights()

        x, input = model_select(config=config, input_shape=input_shape, conv=False, dropout=False)

        if dense:
            outputs = Dense(embedding_dim)(x)
        else:
            outputs = Dense(embedding_dim, activation='softmax')(x)

        model_1_batch = Model(inputs=input, outputs=outputs)

        model_1_batch.compile(optimizer='adam',
                              loss='categorical_crossentropy',
                              metrics=['accuracy'])

        model_1_batch.set_weights(weights=weights)

        embeddings_profess = np.zeros((len(list_feature_flatten), embedding_dim))

        for ii_emb in range(len(list_feature_flatten)):
            print('calculate', ii, 'run time', ii_emb, 'embedding', len(list_feature_flatten), 'total')

            x_batch = np.expand_dims(scaler.transform(list_feature_flatten[ii_emb]), axis=0)

            embeddings_profess[ii_emb, :] = model_1_batch.predict_on_batch(x_batch)

        np.save(file=os.path.join(path_eval,
                                  model_name + '_embedding_overall_quality' + dense_str + emb_all_str + str(ii)),
                arr=embeddings_profess)

        np.save(file=os.path.join(path_eval,
                                  model_name + '_embeddings_labels' + dense_str + emb_all_str), arr=label)
示例#7
0
def embedding_classifier_ap(filename_feature_teacher,
                            filename_list_key_teacher,
                            filename_feature_student,
                            filename_list_key_student,
                            filename_scaler,
                            config,
                            val_test,
                            MTL=False,
                            attention=False,
                            dense=False,
                            conv=False,
                            dropout=0.25):
    """calculate average precision of classifier embedding"""

    list_feature_flatten_val, label_integer_val, le, scaler = \
        load_data_embedding_teacher_student(filename_feature_teacher=filename_feature_teacher,
                                            filename_list_key_teacher=filename_list_key_teacher,
                                            filename_feature_student=filename_feature_student,
                                            filename_list_key_student=filename_list_key_student,
                                            filename_scaler=filename_scaler)

    labels = le.inverse_transform(label_integer_val)
    # combine teacher and student label to the same one
    phn_set = list(set([l.split('_')[0] for l in labels]))
    for ii in range(len(phn_set)):
        indices_phn = [
            i for i, s in enumerate(labels) if phn_set[ii] == s.split('_')[0]
        ]
        label_integer_val[indices_phn] = ii
    index_teacher = [
        ii for ii in range(len(label_integer_val)) if 'teacher' in labels[ii]
    ]
    index_student = [
        ii for ii in range(len(label_integer_val)) if 'student' in labels[ii]
    ]

    print('index_teacher min max', min(index_teacher), max(index_teacher))
    print('index_student min max', min(index_student), max(index_student))

    path_model = '/home/gong/Documents/pycharmProjects/phoneticSimilarity/models/phone_embedding_classifier'
    path_eval = '/home/gong/Documents/pycharmProjects/phoneticSimilarity/eval/phone_embedding_classifier'

    # configs = [[1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]]
    # configs = [[1, 1]]

    # for config in configs:
    model_name = config_select(config)

    list_ap = []
    embedding_dim = 27

    prefix = '_MTL' if MTL else '_27_class'
    if attention and conv and dropout:
        attention_dense_str = 'attention_conv_dropout_'
    elif attention:
        attention_dense_str = "attention_"
    elif dense:
        attention_dense_str = "dense_"
    elif conv:
        attention_dense_str = "conv_"
    elif dropout:
        attention_dense_str = "dropout_"
    else:
        attention_dense_str = ""

    for ii in range(5):
        filename_model = os.path.join(
            path_model,
            model_name + prefix + '_' + attention_dense_str + str(ii) + '.h5')
        if attention:
            model = load_model(
                filepath=filename_model,
                custom_objects={'Attention': Attention(return_attention=True)})
        else:
            model = load_model(filepath=filename_model)

        weights = model.get_weights()

        input_shape = [1, None, 80]
        if attention:
            x, input, _ = model_select_attention(config=config,
                                                 input_shape=input_shape,
                                                 conv=conv,
                                                 dropout=dropout)
        else:
            x, input = model_select(config=config,
                                    input_shape=input_shape,
                                    conv=conv,
                                    dropout=dropout)

        if MTL:
            pronun_out = Dense(embedding_dim,
                               activation='softmax',
                               name='pronunciation')(x)
            if dense:
                x = Dense(32)(x)
            profess_out = Dense(2,
                                activation='softmax',
                                name='professionality')(x)
            model_1_batch = Model(inputs=input,
                                  outputs=[pronun_out, profess_out])
            model_1_batch.compile(optimizer='adam',
                                  loss='categorical_crossentropy',
                                  loss_weights=[0.5, 0.5])
        else:
            if dense:
                outputs = Dense(units=32)(x)
            else:
                outputs = Dense(embedding_dim, activation='softmax')(x)
            model_1_batch = Model(inputs=input, outputs=outputs)

            model_1_batch.compile(optimizer='adam',
                                  loss='categorical_crossentropy',
                                  metrics=['accuracy'])
        print(model_1_batch.summary())

        model_1_batch.set_weights(weights=weights)

        embeddings = np.zeros((len(list_feature_flatten_val), embedding_dim))
        for ii_emb in range(len(list_feature_flatten_val)):
            print('calculate', ii, 'run time', ii_emb, 'embedding',
                  len(list_feature_flatten_val), 'total')

            x_batch = np.expand_dims(scaler.transform(
                list_feature_flatten_val[ii_emb]),
                                     axis=0)
            if MTL:
                out, _ = model_1_batch.predict_on_batch(x_batch)
            else:
                out = model_1_batch.predict_on_batch(x_batch)

            if attention:
                embeddings[ii_emb, :] = out[0, :]
            else:
                embeddings[ii_emb, :] = out

        # dist_mat = distance_matrix_embedding_classifier(embeddings)

        dist_mat = (2.0 - squareform(pdist(embeddings, 'cosine'))) / 2.0
        gt_mat = ground_truth_matrix(label_integer_val)

        # we only compare teacher to student embeddings
        dist_mat = dist_mat[:min(index_student), min(index_student):]
        gt_mat = gt_mat[:min(index_student), min(index_student):]

        np.save(file=os.path.join(path_eval,
                                  'dist_mat_' + 'teacher_student_' + str(ii)),
                arr=dist_mat)

        ap = eval_embeddings_no_trim(dist_mat=dist_mat, gt_mat=gt_mat)

        list_ap.append(ap)

    post_fix = prefix + '_27_class' if val_test == 'val' else prefix + '_27_class_extra_student'

    filename_eval = os.path.join(
        path_eval, model_name + post_fix + attention_dense_str + '.csv')

    with open(filename_eval, 'w') as csvfile:
        csvwriter = csv.writer(
            csvfile,
            delimiter=',',
        )
        csvwriter.writerow([np.mean(list_ap), np.std(list_ap)])
示例#8
0
    #     #     PathEffects.Stroke(linewidth=5, foreground="w"),
    #     #     PathEffects.Normal()])
    #     txts.append(txt)

    plt.show()


if __name__ == '__main__':

    MTL = False
    config = [1, 0]
    embedding_dim = 2
    path_eval = '/home/gong/Documents/pycharmProjects/phoneticSimilarity/eval/phone_embedding_classifier'

    prefix = '_MTL' if MTL else '_2_class_teacher_student'
    model_name = config_select(
        config) + prefix if embedding_dim == 2 else config_select(config)

    # le = pickle.load(open(os.path.join(path_eval, model_name + '_le.pkl'), 'rb'))
    # embedding_profess = np.load(os.path.join(path_eval, model_name + '_embedding_professionality0.npy'))
    # embedding_pronun = np.load(os.path.join(path_eval, model_name + '_embedding_pronunciation0.npy'))
    # labels = np.load(os.path.join(path_eval, model_name + '_embeddings_labels.npy'))

    # plot_tsne_pronun(embedding_pronun, labels, le)
    # plot_tsne_profess(embedding_profess, labels, le)
    dense = True
    dense_str = "dense_32__dense" if dense else ""
    embedding_profess = np.load(
        os.path.join(
            path_eval, model_name + '_embedding_professionality' + dense_str +
            '_all0.npy'))
    labels = np.load(