# dh = DataHandler() dh.merge_csvs_on_first_time_overlap(master, slave, out_path=None, merge_column=None, master_columns=['bx', 'by', 'bz'], slave_columns=['tx', 'ty', 'tz'], rearrange_columns_to=None, save=False, left_index=True, right_index=True) dh.add_columns_based_on_csv(label, columns_name=["label"], join_type="inner") if idx == 0: merged_df = dh.get_dataframe_iterator() continue merged_old_shape = merged_df.shape # vertically stack the dataframes aka add the rows from dataframe2 as rows to the dataframe1 merged_df = dh_stacker.vertical_stack_dataframes( merged_df, dh.get_dataframe_iterator(), set_as_current_df=False) print("shape merged df: ", merged_df.shape, "should be ", dh.get_dataframe_iterator().shape, " more than old ", merged_old_shape) print("Final merge form: ", merged_df.shape)
'3': [['2018-04-24', '14:08:01', '15:08:00']] }) ###################################### remove rows that does not have label ########################### df1 = dh1.get_dataframe_iterator() df2 = dh2.get_dataframe_iterator() print(df1.shape, df2.shape) df1.dropna(subset=['label'], inplace=True) df2.dropna(subset=['label'], inplace=True) print(df1.shape, df2.shape) ############################## THEN COMBINE INTO ONE BIG TRAINING SET AKA VERTICAL STACKING ############# dataframe = dh1.vertical_stack_dataframes(df1, df2, set_as_current_df=False) # dataframe = dh1.vertical_stack_dataframes(dataframe, df3, set_as_current_df=False) print("DATAFRAME\n", dataframe.head(5), dataframe.shape) ############################## THEN WE MUST EXTRACT FEATURES N LABELS ###################################### pipeObj = Pipeline() back_feat_train, thigh_feat_train, label_train = pipeObj.get_features_and_labels_as_np_array( dataframe) ############################## THEN WE MUST TRAIN THE CLASSIFIER ###################################### RFC = models.get("RFC", {}) ############## # MODEL ARGUMENTS