def main(cl_arguments): ''' Run REPL for a CoLA model ''' # Arguments handling # cl_args = handle_arguments(cl_arguments) args = config.params_from_file(cl_args.config_file, cl_args.overrides) check_arg_name(args) assert args.target_tasks == "cola", \ "Currently only supporting CoLA. ({})".format(args.target_tasks) if args.cuda >= 0: try: if not torch.cuda.is_available(): raise EnvironmentError("CUDA is not available, or not detected" " by PyTorch.") log.info("Using GPU %d", args.cuda) torch.cuda.set_device(args.cuda) except Exception: log.warning("GPU access failed. You might be using a CPU-only" " installation of PyTorch. Falling back to CPU.") args.cuda = -1 # Prepare data # _, target_tasks, vocab, word_embs = build_tasks(args) tasks = sorted(set(target_tasks), key=lambda x: x.name) # Build or load model # model = build_model(args, vocab, word_embs, tasks) log.info("Loading existing model from %s...", cl_args.model_file_path) load_model_state(model, cl_args.model_file_path, args.cuda, [], strict=False) # Inference Setup # model.eval() vocab = Vocabulary.from_files(os.path.join(args.exp_dir, 'vocab')) indexers = build_indexers(args) task = take_one(tasks) # Run Inference # if cl_args.inference_mode == "repl": assert cl_args.input_path is None assert cl_args.output_path is None print("Running REPL for task: {}".format(task.name)) run_repl(model, vocab, indexers, task, args) elif cl_args.inference_mode == "corpus": run_corpus_inference( model, vocab, indexers, task, args, cl_args.input_path, cl_args.input_format, cl_args.output_path, cl_args.eval_output_path, ) else: raise KeyError(cl_args.inference_mode)
def main(cl_arguments): ''' Train or load a model. Evaluate on some tasks. ''' cl_args = handle_arguments(cl_arguments) args = config.params_from_file(cl_args.config_file, cl_args.overrides) # Logistics # maybe_make_dir(args.project_dir) # e.g. /nfs/jsalt/exp/$HOSTNAME maybe_make_dir(args.exp_dir) # e.g. <project_dir>/jiant-demo maybe_make_dir(args.run_dir) # e.g. <project_dir>/jiant-demo/sst log.getLogger().addHandler(log.FileHandler(args.local_log_path)) if cl_args.remote_log: gcp.configure_remote_logging(args.remote_log_name) if cl_args.notify: from src import emails global EMAIL_NOTIFIER log.info("Registering email notifier for %s", cl_args.notify) EMAIL_NOTIFIER = emails.get_notifier(cl_args.notify, args) if EMAIL_NOTIFIER: EMAIL_NOTIFIER(body="Starting run.", prefix="") _try_logging_git_info() log.info("Parsed args: \n%s", args) config_file = os.path.join(args.run_dir, "params.conf") config.write_params(args, config_file) log.info("Saved config to %s", config_file) seed = random.randint(1, 10000) if args.random_seed < 0 else args.random_seed random.seed(seed) torch.manual_seed(seed) log.info("Using random seed %d", seed) if args.cuda >= 0: try: if not torch.cuda.is_available(): raise EnvironmentError("CUDA is not available, or not detected" " by PyTorch.") log.info("Using GPU %d", args.cuda) torch.cuda.set_device(args.cuda) torch.cuda.manual_seed_all(seed) except Exception: log.warning( "GPU access failed. You might be using a CPU-only installation of PyTorch. Falling back to CPU.") args.cuda = -1 # Prepare data # log.info("Loading tasks...") start_time = time.time() train_tasks, eval_tasks, vocab, word_embs = build_tasks(args) if any([t.val_metric_decreases for t in train_tasks]) and any( [not t.val_metric_decreases for t in train_tasks]): log.warn("\tMixing training tasks with increasing and decreasing val metrics!") tasks = sorted(set(train_tasks + eval_tasks), key=lambda x: x.name) log.info('\tFinished loading tasks in %.3fs', time.time() - start_time) log.info('\t Tasks: {}'.format([task.name for task in tasks])) # Build or load model # log.info('Building model...') start_time = time.time() model = build_model(args, vocab, word_embs, tasks) log.info('\tFinished building model in %.3fs', time.time() - start_time) # Check that necessary parameters are set for each step. Exit with error if not. steps_log = [] if not args.load_eval_checkpoint == 'none': assert_for_log(os.path.exists(args.load_eval_checkpoint), "Error: Attempting to load model from non-existent path: [%s]" % args.load_eval_checkpoint) assert_for_log( not args.do_train, "Error: Attempting to train a model and then replace that model with one from a checkpoint.") steps_log.append("Loading model from path: %s" % args.load_eval_checkpoint) if args.do_train: assert_for_log(args.train_tasks != "none", "Error: Must specify at least on training task: [%s]" % args.train_tasks) assert_for_log( args.val_interval % args.bpp_base == 0, "Error: val_interval [%d] must be divisible by bpp_base [%d]" % (args.val_interval, args.bpp_base)) steps_log.append("Training model on tasks: %s" % args.train_tasks) if args.train_for_eval: steps_log.append("Re-training model for individual eval tasks") assert_for_log( args.eval_val_interval % args.bpp_base == 0, "Error: eval_val_interval [%d] must be divisible by bpp_base [%d]" % (args.eval_val_interval, args.bpp_base)) assert_for_log(len(set(train_tasks).intersection(eval_tasks)) == 0 or args.allow_reuse_of_pretraining_parameters or args.do_train == 0, "If you're pretraining on a task you plan to reuse as a target task, set\n" "allow_reuse_of_pretraining_parameters = 1(risky), or train in two steps:\n" " train with do_train = 1, train_for_eval = 0, stop, and restart with\n" " do_train = 0 and train_for_eval = 1.") if args.do_eval: assert_for_log(args.eval_tasks != "none", "Error: Must specify at least one eval task: [%s]" % args.eval_tasks) steps_log.append("Evaluating model on tasks: %s" % args.eval_tasks) # Start Tensorboard if requested if cl_args.tensorboard: tb_logdir = os.path.join(args.run_dir, "tensorboard") _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port) log.info("Will run the following steps:\n%s", '\n'.join(steps_log)) if args.do_train: # Train on train tasks # log.info("Training...") params = build_trainer_params(args, task_names=[]) stop_metric = train_tasks[0].val_metric if len(train_tasks) == 1 else 'macro_avg' should_decrease = train_tasks[0].val_metric_decreases if len(train_tasks) == 1 else False trainer, _, opt_params, schd_params = build_trainer(params, model, args.run_dir, should_decrease) to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad] best_epochs = trainer.train(train_tasks, stop_metric, args.batch_size, args.bpp_base, args.weighting_method, args.scaling_method, to_train, opt_params, schd_params, args.shared_optimizer, args.load_model, phase="main") # Select model checkpoint from main training run to load if not args.train_for_eval: log.info("In strict mode because train_for_eval is off. " "Will crash if any tasks are missing from the checkpoint.") strict = True else: strict = False if args.train_for_eval and not args.allow_reuse_of_pretraining_parameters: # If we're training models for evaluation, which is always done from scratch with a fresh # optimizer, we shouldn't load parameters for those models. # Usually, there won't be trained parameters to skip, but this can happen if a run is killed # during the train_for_eval phase. task_names_to_avoid_loading = [task.name for task in eval_tasks] else: task_names_to_avoid_loading = [] if not args.load_eval_checkpoint == "none": log.info("Loading existing model from %s...", args.load_eval_checkpoint) load_model_state(model, args.load_eval_checkpoint, args.cuda, task_names_to_avoid_loading, strict=strict) else: # Look for eval checkpoints (available only if we're restoring from a run that already # finished), then look for training checkpoints. eval_best = glob.glob(os.path.join(args.run_dir, "model_state_eval_best.th")) if len(eval_best) > 0: load_model_state( model, eval_best[0], args.cuda, task_names_to_avoid_loading, strict=strict) else: macro_best = glob.glob(os.path.join(args.run_dir, "model_state_main_epoch_*.best_macro.th")) if len(macro_best) > 0: assert_for_log(len(macro_best) == 1, "Too many best checkpoints. Something is wrong.") load_model_state( model, macro_best[0], args.cuda, task_names_to_avoid_loading, strict=strict) else: assert_for_log( args.allow_untrained_encoder_parameters, "No best checkpoint found to evaluate.") log.warning("Evaluating untrained encoder parameters!") # Train just the task-specific components for eval tasks. if args.train_for_eval: # might be empty if no elmo. scalar_mix_0 should always be pretrain scalars elmo_scalars = [(n, p) for n, p in model.named_parameters() if "scalar_mix" in n and "scalar_mix_0" not in n] # fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero length assert_for_log(not elmo_scalars or args.sep_embs_for_skip, "Error: ELMo scalars loaded and will be updated in train_for_eval but " "they should not be updated! Check sep_embs_for_skip flag or make an issue.") for task in eval_tasks: # Skip mnli-diagnostic # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task" # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and # "is_probing_task is global flag specific to a run, not to a task. if task.name == 'mnli-diagnostic': continue pred_module = getattr(model, "%s_mdl" % task.name) to_train = elmo_scalars + [(n, p) for n, p in pred_module.named_parameters() if p.requires_grad] # Look for <task_name>_<param_name>, then eval_<param_name> params = build_trainer_params(args, task_names=[task.name, 'eval']) trainer, _, opt_params, schd_params = build_trainer(params, model, args.run_dir, task.val_metric_decreases) best_epoch = trainer.train([task], task.val_metric, args.batch_size, 1, args.weighting_method, args.scaling_method, to_train, opt_params, schd_params, args.shared_optimizer, load_model=False, phase="eval") # Now that we've trained a model, revert to the normal checkpoint logic for this task. task_names_to_avoid_loading.remove(task.name) # The best checkpoint will accumulate the best parameters for each task. # This logic looks strange. We think it works. best_epoch = best_epoch[task.name] layer_path = os.path.join(args.run_dir, "model_state_eval_best.th") load_model_state( model, layer_path, args.cuda, skip_task_models=task_names_to_avoid_loading, strict=strict) if args.do_eval: # Evaluate # log.info("Evaluating...") val_results, val_preds = evaluate.evaluate(model, eval_tasks, args.batch_size, args.cuda, "val") splits_to_write = evaluate.parse_write_preds_arg(args.write_preds) if 'val' in splits_to_write: evaluate.write_preds(eval_tasks, val_preds, args.run_dir, 'val', strict_glue_format=args.write_strict_glue_format) if 'test' in splits_to_write: _, te_preds = evaluate.evaluate(model, eval_tasks, args.batch_size, args.cuda, "test") evaluate.write_preds(tasks, te_preds, args.run_dir, 'test', strict_glue_format=args.write_strict_glue_format) run_name = args.get("run_name", os.path.basename(args.run_dir)) results_tsv = os.path.join(args.exp_dir, "results.tsv") log.info("Writing results for split 'val' to %s", results_tsv) evaluate.write_results(val_results, results_tsv, run_name=run_name) log.info("Done!")
def main(cl_arguments): ''' Train a model for multitask-training.''' cl_args = handle_arguments(cl_arguments) args = config.params_from_file(cl_args.config_file, cl_args.overrides) # Check for deprecated arg names check_arg_name(args) args, seed = initial_setup(args, cl_args) # Load tasks log.info("Loading tasks...") start_time = time.time() pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args) tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name) log.info('\tFinished loading tasks in %.3fs', time.time() - start_time) log.info('\t Tasks: {}'.format([task.name for task in tasks])) # Build model log.info('Building model...') start_time = time.time() model = build_model(args, vocab, word_embs, tasks) log.info('\tFinished building model in %.3fs', time.time() - start_time) # Start Tensorboard if requested if cl_args.tensorboard: tb_logdir = os.path.join(args.run_dir, "tensorboard") _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port) check_configurations(args, pretrain_tasks, target_tasks) if args.do_pretrain: # Train on pretrain tasks log.info("Training...") stop_metric = pretrain_tasks[0].val_metric if len( pretrain_tasks) == 1 else 'macro_avg' should_decrease = pretrain_tasks[0].val_metric_decreases if len( pretrain_tasks) == 1 else False trainer, _, opt_params, schd_params = build_trainer(args, [], model, args.run_dir, should_decrease, phase="pretrain") to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad] _ = trainer.train(pretrain_tasks, stop_metric, args.batch_size, args.weighting_method, args.scaling_method, to_train, opt_params, schd_params, args.shared_optimizer, args.load_model, phase="pretrain") # For checkpointing logic if not args.do_target_task_training: log.info("In strict mode because do_target_task_training is off. " "Will crash if any tasks are missing from the checkpoint.") strict = True else: strict = False if args.do_target_task_training: # Train on target tasks task_names_to_avoid_loading = setup_target_task_training( args, target_tasks, model, strict) if args.transfer_paradigm == "frozen": # might be empty if elmo = 0. scalar_mix_0 should always be # pretrain scalars elmo_scalars = [(n, p) for n, p in model.named_parameters() if "scalar_mix" in n and "scalar_mix_0" not in n] # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero # length. assert_for_log( not elmo_scalars or args.sep_embs_for_skip, "Error: ELMo scalars loaded and will be updated in do_target_task_training but " "they should not be updated! Check sep_embs_for_skip flag or make an issue." ) for task in target_tasks: # Skip mnli-diagnostic # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task" # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and # "is_probing_task is global flag specific to a run, not to a task. if task.name == 'mnli-diagnostic': continue if args.transfer_paradigm == "finetune": # Train both the task specific models as well as sentence # encoder. to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad] else: # args.transfer_paradigm == "frozen": # Only train task-specific module pred_module = getattr(model, "%s_mdl" % task.name) to_train = [(n, p) for n, p in pred_module.named_parameters() if p.requires_grad] to_train += elmo_scalars trainer, _, opt_params, schd_params = build_trainer( args, [task.name, 'target_train'], model, args.run_dir, task.val_metric_decreases, phase="target_train") _ = trainer.train(tasks=[task], stop_metric=task.val_metric, batch_size=args.batch_size, weighting_method=args.weighting_method, scaling_method=args.scaling_method, train_params=to_train, optimizer_params=opt_params, scheduler_params=schd_params, shared_optimizer=args.shared_optimizer, load_model=False, phase="target_train") # Now that we've trained a model, revert to the normal checkpoint # logic for this task. if task.name in task_names_to_avoid_loading: task_names_to_avoid_loading.remove(task.name) # The best checkpoint will accumulate the best parameters for each # task. layer_path = os.path.join(args.run_dir, "model_state_target_train_best.th") if args.transfer_paradigm == "finetune": # Save this fine-tune model with a task specific name. finetune_path = os.path.join( args.run_dir, "model_state_%s_best.th" % task.name) os.rename(layer_path, finetune_path) # Reload the original best model from before target-task # training. pre_finetune_path = get_best_checkpoint_path(args.run_dir) load_model_state(model, pre_finetune_path, args.cuda, skip_task_models=[], strict=strict) else: # args.transfer_paradigm == "frozen": # Load the current overall best model. # Save the best checkpoint from that target task training to be # specific to that target task. load_model_state(model, layer_path, args.cuda, strict=strict, skip_task_models=task_names_to_avoid_loading) if args.do_full_eval: # Evaluate log.info("Evaluating...") splits_to_write = evaluate.parse_write_preds_arg(args.write_preds) if args.transfer_paradigm == "finetune": for task in target_tasks: if task.name == 'mnli-diagnostic': # we'll load mnli-diagnostic during mnli continue # Special checkpointing logic here since we train the sentence encoder # and have a best set of sent encoder model weights per task. finetune_path = os.path.join( args.run_dir, "model_state_%s_best.th" % task.name) if os.path.exists(finetune_path): ckpt_path = finetune_path else: ckpt_path = get_best_checkpoint_path(args.run_dir) load_model_state(model, ckpt_path, args.cuda, skip_task_models=[], strict=strict) tasks = [task] if task.name == 'mnli': tasks += [ t for t in target_tasks if t.name == 'mnli-diagnostic' ] evaluate_and_write(args, model, tasks, splits_to_write) elif args.transfer_paradigm == "frozen": # Don't do any special checkpointing logic here # since model already has all the trained task specific modules. evaluate_and_write(args, model, target_tasks, splits_to_write) log.info("Done!")
def main(cl_arguments): ''' Train or load a model. Evaluate on some tasks. ''' cl_args = handle_arguments(cl_arguments) args = config.params_from_file(cl_args.config_file, cl_args.overrides) # Raise error if obsolete arg names are present check_arg_name(args) # Logistics # maybe_make_dir(args.project_dir) # e.g. /nfs/jsalt/exp/$HOSTNAME maybe_make_dir(args.exp_dir) # e.g. <project_dir>/jiant-demo maybe_make_dir(args.run_dir) # e.g. <project_dir>/jiant-demo/sst log.getLogger().addHandler(log.FileHandler(args.local_log_path)) if cl_args.remote_log: from src.utils import gcp gcp.configure_remote_logging(args.remote_log_name) if cl_args.notify: from src.utils import emails global EMAIL_NOTIFIER log.info("Registering email notifier for %s", cl_args.notify) EMAIL_NOTIFIER = emails.get_notifier(cl_args.notify, args) if EMAIL_NOTIFIER: EMAIL_NOTIFIER(body="Starting run.", prefix="") _try_logging_git_info() log.info("Parsed args: \n%s", args) config_file = os.path.join(args.run_dir, "params.conf") config.write_params(args, config_file) log.info("Saved config to %s", config_file) seed = random.randint(1, 10000) if args.random_seed < 0 else args.random_seed random.seed(seed) torch.manual_seed(seed) log.info("Using random seed %d", seed) if args.cuda >= 0: try: if not torch.cuda.is_available(): raise EnvironmentError("CUDA is not available, or not detected" " by PyTorch.") log.info("Using GPU %d", args.cuda) torch.cuda.set_device(args.cuda) torch.cuda.manual_seed_all(seed) except Exception: log.warning( "GPU access failed. You might be using a CPU-only installation of PyTorch. Falling back to CPU.") args.cuda = -1 # Prepare data # log.info("Loading tasks...") start_time = time.time() pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args) if any([t.val_metric_decreases for t in pretrain_tasks]) and any( [not t.val_metric_decreases for t in pretrain_tasks]): log.warn("\tMixing training tasks with increasing and decreasing val metrics!") tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name) log.info('\tFinished loading tasks in %.3fs', time.time() - start_time) log.info('\t Tasks: {}'.format([task.name for task in tasks])) # Build model # log.info('Building model...') start_time = time.time() model = build_model(args, vocab, word_embs, tasks) log.info('\tFinished building model in %.3fs', time.time() - start_time) # Check that necessary parameters are set for each step. Exit with error if not. steps_log = [] if not args.load_eval_checkpoint == 'none': assert_for_log(os.path.exists(args.load_eval_checkpoint), "Error: Attempting to load model from non-existent path: [%s]" % args.load_eval_checkpoint) assert_for_log( not args.do_pretrain, "Error: Attempting to train a model and then replace that model with one from a checkpoint.") steps_log.append("Loading model from path: %s" % args.load_eval_checkpoint) assert_for_log(args.transfer_paradigm in ["finetune", "frozen"], "Transfer paradigm %s not supported!" % args.transfer_paradigm) if args.do_pretrain: assert_for_log(args.pretrain_tasks != "none", "Error: Must specify at least on training task: [%s]" % args.pretrain_tasks) assert_for_log( args.val_interval % args.bpp_base == 0, "Error: val_interval [%d] must be divisible by bpp_base [%d]" % (args.val_interval, args.bpp_base)) steps_log.append("Training model on tasks: %s" % args.pretrain_tasks) if args.do_target_task_training: steps_log.append("Re-training model for individual eval tasks") assert_for_log( args.eval_val_interval % args.bpp_base == 0, "Error: eval_val_interval [%d] must be divisible by bpp_base [%d]" % (args.eval_val_interval, args.bpp_base)) assert_for_log(len(set(pretrain_tasks).intersection(target_tasks)) == 0 or args.allow_reuse_of_pretraining_parameters or args.do_pretrain == 0, "If you're pretraining on a task you plan to reuse as a target task, set\n" "allow_reuse_of_pretraining_parameters = 1(risky), or train in two steps:\n" " train with do_pretrain = 1, do_target_task_training = 0, stop, and restart with\n" " do_pretrain = 0 and do_target_task_training = 1.") if args.do_full_eval: assert_for_log(args.target_tasks != "none", "Error: Must specify at least one eval task: [%s]" % args.target_tasks) steps_log.append("Evaluating model on tasks: %s" % args.target_tasks) # Start Tensorboard if requested if cl_args.tensorboard: tb_logdir = os.path.join(args.run_dir, "tensorboard") _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port) log.info("Will run the following steps:\n%s", '\n'.join(steps_log)) if args.do_pretrain: # Train on train tasks # log.info("Training...") stop_metric = pretrain_tasks[0].val_metric if len(pretrain_tasks) == 1 else 'macro_avg' should_decrease = pretrain_tasks[0].val_metric_decreases if len(pretrain_tasks) == 1 else False trainer, _, opt_params, schd_params = build_trainer(args, [], model, args.run_dir, should_decrease) to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad] _ = trainer.train(pretrain_tasks, stop_metric, args.batch_size, args.bpp_base, args.weighting_method, args.scaling_method, to_train, opt_params, schd_params, args.shared_optimizer, args.load_model, phase="main") # Select model checkpoint from main training run to load if not args.do_target_task_training: log.info("In strict mode because do_target_task_training is off. " "Will crash if any tasks are missing from the checkpoint.") strict = True else: strict = False if args.do_target_task_training and not args.allow_reuse_of_pretraining_parameters: # If we're training models for evaluation, which is always done from scratch with a fresh # optimizer, we shouldn't load parameters for those models. # Usually, there won't be trained parameters to skip, but this can happen if a run is killed # during the do_target_task_training phase. task_names_to_avoid_loading = [task.name for task in target_tasks] else: task_names_to_avoid_loading = [] if not args.load_eval_checkpoint == "none": # This is to load a particular eval checkpoint. log.info("Loading existing model from %s...", args.load_eval_checkpoint) load_model_state(model, args.load_eval_checkpoint, args.cuda, task_names_to_avoid_loading, strict=strict) else: # Look for eval checkpoints (available only if we're restoring from a run that already # finished), then look for training checkpoints. if args.transfer_paradigm == "finetune": # Save model so we have a checkpoint to go back to after each task-specific finetune. model_state = model.state_dict() model_path = os.path.join(args.run_dir, "model_state_untrained_prefinetune.th") torch.save(model_state, model_path) best_path = get_best_checkpoint_path(args.run_dir) if best_path: load_model_state(model, best_path, args.cuda, task_names_to_avoid_loading, strict=strict) else: assert_for_log(args.allow_untrained_encoder_parameters, "No best checkpoint found to evaluate.") log.warning("Evaluating untrained encoder parameters!") # Train just the task-specific components for eval tasks. if args.do_target_task_training: if args.transfer_paradigm == "frozen": # might be empty if elmo = 0. scalar_mix_0 should always be pretrain scalars elmo_scalars = [(n, p) for n, p in model.named_parameters() if "scalar_mix" in n and "scalar_mix_0" not in n] # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero length. assert_for_log(not elmo_scalars or args.sep_embs_for_skip, "Error: ELMo scalars loaded and will be updated in do_target_task_training but " "they should not be updated! Check sep_embs_for_skip flag or make an issue.") for task in target_tasks: # Skip mnli-diagnostic # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task" # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and # "is_probing_task is global flag specific to a run, not to a task. if task.name == 'mnli-diagnostic': continue if args.transfer_paradigm == "finetune": # Train both the task specific models as well as sentence encoder. to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad] else: # args.transfer_paradigm == "frozen": # Only train task-specific module. pred_module = getattr(model, "%s_mdl" % task.name) to_train = [(n, p) for n, p in pred_module.named_parameters() if p.requires_grad] to_train += elmo_scalars # Look for <task_name>_<param_name>, then eval_<param_name> trainer, _, opt_params, schd_params = build_trainer(args, [task.name, 'eval'], model, args.run_dir, task.val_metric_decreases) _ = trainer.train(tasks=[task], stop_metric=task.val_metric, batch_size=args.batch_size, n_batches_per_pass=1, weighting_method=args.weighting_method, scaling_method=args.scaling_method, train_params=to_train, optimizer_params=opt_params, scheduler_params=schd_params, shared_optimizer=args.shared_optimizer, load_model=False, phase="eval") # Now that we've trained a model, revert to the normal checkpoint logic for this task. if task.name in task_names_to_avoid_loading: task_names_to_avoid_loading.remove(task.name) # The best checkpoint will accumulate the best parameters for each task. # This logic looks strange. We think it works. layer_path = os.path.join(args.run_dir, "model_state_eval_best.th") if args.transfer_paradigm == "finetune": # If we finetune, # Save this fine-tune model with a task specific name. finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name) os.rename(layer_path, finetune_path) # Reload the original best model from before target-task training. pre_finetune_path = get_best_checkpoint_path(args.run_dir) load_model_state(model, pre_finetune_path, args.cuda, skip_task_models=[], strict=strict) else: # args.transfer_paradigm == "frozen": # Load the current overall best model. # Save the best checkpoint from that target task training to be # specific to that target task. load_model_state(model, layer_path, args.cuda, strict=strict, skip_task_models=task_names_to_avoid_loading) if args.do_full_eval: # Evaluate # log.info("Evaluating...") splits_to_write = evaluate.parse_write_preds_arg(args.write_preds) if args.transfer_paradigm == "finetune": for task in target_tasks: if task.name == 'mnli-diagnostic': # we'll load mnli-diagnostic during mnli continue finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name) if os.path.exists(finetune_path): ckpt_path = finetune_path else: ckpt_path = get_best_checkpoint_path(args.run_dir) load_model_state(model, ckpt_path, args.cuda, skip_task_models=[], strict=strict) tasks = [task] if task.name == 'mnli': tasks += [t for t in target_tasks if t.name == 'mnli-diagnostic'] evaluate_and_write(args, model, tasks, splits_to_write) elif args.transfer_paradigm == "frozen": evaluate_and_write(args, model, target_tasks, splits_to_write) log.info("Done!")