normal_cardiac = util.normalizeImage(cardiac) dft_cardiac = util.getDFT(normal_cardiac) height, width = cardiac.shape cardiac_size = np.array([height, width]) brain = util.loadImage("images/brain.png") normal_brain = util.normalizeImage(brain) dft_brain = util.getDFT(normal_brain) height, width = brain.shape brain_size = np.array([height, width]) cutoff = np.array([5, 20, 45, 60]) order = np.array([1, 2, 3, 4]) for i in cutoff: for j in order: p6mask = noise.butterworthLowpassFilter(brain_size, i, j) p6applied = util.applyMask(dft_brain, p6mask) p6image = util.getImage(p6applied) p6fimage = util.post_process_image(p6image) filename = "p6_Masked_Image_" + str(i) + "_" + str(j) + ".jpg" snr_p6 = util.signalToNoise(brain, p6fimage) print(filename, snr_p6) util.saveImage(filename, p6fimage) glhp = np.array([200, 40, 120, 10]) for k in glhp: p7lmask = noise.gaussianLowpassFilter(brain_size, k) p7lapplied = util.applyMask(dft_brain, p7lmask) p7limage = util.getImage(p7lapplied) p7lfimage = util.post_process_image(p7limage) filename = "p7_GLP_Masked_Image_" + str(k) + ".jpg"
def test_butterworthLowpassFilter_high_width_high_order(self): expected = self.setup.getExpectedOutput(self._testMethodName) self.actual = noise.butterworthLowpassFilter(self.emptymask, 50, 3) self.actual = self.setup.normalizeImage(self.actual) self.assertTrue(self.setup.imagesEqual(expected, self.actual))